Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Để phương trình có 2 nghiệm thì: \(\Delta^'\ge0\)
Hay:\(2^2-\left(2m-5\right)\ge0\)
\(\Leftrightarrow4-2m+5\ge0\)
\(\Leftrightarrow-2m\ge-9\)
\(\Leftrightarrow m\le\frac{9}{2}\)
Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=2m-5\end{cases}}\)
Ta có: \(x_1^2+x_2^2-x_1x_2=20\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=20\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=20\)
\(\Leftrightarrow\left(-4\right)^2-3\left(2m-5\right)=20\)
\(\Leftrightarrow16-6m+15=20\)
\(\Leftrightarrow-6m=-11\)
\(\Leftrightarrow m=\frac{11}{6}\)(tm)
=.= hk tốt!!
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
\(\Delta=4m^2+4m+1-4m^2-4m+24=25>0\)
suy ra phương trình có 2 nghiệm x1, x2 thỏa mãn:
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2m+1+5}{2}=m+3\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2m+1-5}{2}=m-2\end{cases}}\)
hoặc ngược lại, x1=m-2 và x2=m+3
Nếu x1=m+3 và x2=m-2 thay vào ta có: \(\left(m-2\right)^2-4\left(m+3\right)=m^2-4m+4-4m-12=m^2-8\ge-8\)
Nếu ngược lại thay vào ta có:
\(\left(m+3\right)^2-4\left(m-2\right)=m^2+6m+9-4m+8=m^2-2m+17=\left(m-1\right)^2+16\ge16\)
Vậy m=0 thì thỏa mãn biểu thức đó nhỏ nhất
Theo hệ thức Vi ét ta có x1+x2=-2(m+1); x1x2=4m
phương trình thứ 2 <=> 4x12+4x12x2+4x22+4x1x22+x12x22=36
<=>( 4x12+4x22)+(4x12x2+4x1x22)+(x1x2)2=36
<=>4(x12+x22)+4x1x2(x1+x2)+(x1x2)2=36
<=>4[(x1+x2)-2x1x2]+4x1x2(x1+x2)+(x1x2)2=36
Bạn thay nốt và rồi giải phương trình ra nha