K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

chịu

k nha

26 tháng 5 2019

Mình không vẽ hình được bạn thông cảm nhé

Gọi K là giao điểm của OM và AB

Xét tam giác MBO vuông có

OK.OM=OB^2=R^2

VÌ H là trung điểm của CD

=> \(OH\perp CD\)

=> tam giác EKO đồng dạng tam giác MHO

=> OH.OE=OK.OM=R^2=OC^2

=> \(\frac{OH}{OC}=\frac{OC}{OE}\)

=> tam giác EHC đồng dạng tam giác ECO

=> ECO=90độ

=> EC là tiếp tuyến của đường tròn

CMTT ED là tiếp tuyến của đường tròn

MÀ C,D cố định

=> E cố định 

=> AB đi qua E cố định

Vậy AB luôn đi qua một điểm cố định khi M di chuyển trên d

24 tháng 8 2019

M P Q O H I K

a) Ta thấy OM là trung trực của PQ => OM vuông góc PQ => ^OKI = ^OHM = 900

=> \(\Delta\)OKI ~ \(\Delta\)OHM (g.g) => OH.OI = OK.OM (đpcm).

b) Áp dụng hệ thức lượng trong tam giác vuông có: OH.OI = OK.OM = OP2 = R2

Vì d,O đều cố định nên khoẳng cách từ O tới d không đổi hay OH không đổi

Vậy \(OI=\frac{R^2}{OH}=const\). Mà tia OI cố định nên I cố định (đpcm).

16 tháng 8 2019

O M A B d H I K

a) MA và MB là hai tiếp tuyến từ M đến (O) nên MA = MB => OM là trung trực của AB

=> OM vuông góc AB (tại K) => ^OKI = ^OHM = 900 => \(\Delta\)OKI ~ \(\Delta\)OHM (g.g)

Vậy OI.OH = OK.OM (đpcm).

b) Áp dụng hệ thức lượng trong tam giác vuông có: OI.OH = OK.OM = OA2 = R2 (Không đổi)

Vì d cố định, O cố định nên khoảng cách từ O tới d không đổi hay OH không đổi

Do vậy \(OI=\frac{R^2}{OH}=const\)=> Đường tròn (OI) cố định

Mà K thuộc (OI) (vì ^OKI nhìn đoạn IO dưới góc 900) nên K di chuyển trên (OI) cố định (đpcm).

19 tháng 8 2019

const là gì mình chưa biết ban giải thích cái đó được không?

a: Ta có: \(\widehat{OHM}=\widehat{OAM}=\widehat{OBM}=90^0\)

=>O,H,M,A,B cùng thuộc đường tròn đường kính OM

b: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

từ (1) và (2) suy ra OM là đường trung trực của AB

=>OM\(\perp\)AB tại I

Xét ΔOIK vuông tại I và ΔOHM vuông tại H có

\(\widehat{IOK}\) chung

Do đó; ΔOIK~ΔOHM

=>\(\dfrac{OI}{OH}=\dfrac{OK}{OM}\)

=>\(OI\cdot OM=OK\cdot OH\)