K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Y
0
VH
0
3 tháng 1 2016
p nguyên tố p>3
=>p có dạng 6m+1 và 6m-1
Thay vào p^2+2012 chứng minh nó là hợp số nữa là xong bạn à.
Nếu thấy bài làm của mình đúng thì tick nha bạn.Cảm ơn bạn nhiều.
WR
0
17 tháng 4 2016
câu 1 bạn xét p là 2 số có 2 dạng là 3k+1 và 3k+2
câu 2 xét số đó là có dạng ab và xét từng tr hợp số chẵn lẻ
mik k có thời gian nên k vt đc cho bạn nên bạn tự lm nha
hộ
TH
1
25 tháng 2 2018
Ta có: p là SNT > 3 => p k chia hết cho 3
=> p^2 chia 3 dư 1 => p^2 + 2012 chia hết cho 3 và p^2 + 2012 > 3 => p^2 + 2012 là hợp số.
Vì p là số nguyên tố lớn hơn 3
=> P không chia hết cho 3
=>P^2 không chia hết cho 3
=>P^2 có dạng 3k+1
=>P^2+2012=3k+1+2012=3m+2013 chia hết cho 3 => hợp số
học tốt :)
Đề bài: Cho P là số nguyên tố lớn hơn 3 chứng minh rằng : \(p^2+2012\) là hợp số
Vì p là số nguyên tố lớn hơn 3 nên p viết được dưới dạng \(3k+1\)hoặc \(3k+2\)
- Nếu \(p=3k+1\) thì \(p^2+2012=\left(3k+1\right)^2+2012=3k\left(3k+1\right)+3k+1+2012=9k^2+3k+3k+2013=9k^2+6k+2013\)
Có \(\hept{\begin{cases}9k^2⋮3\\6k⋮3\\2013⋮3\end{cases}\Rightarrow9k^2+6k+2013⋮3}\)
\(\Rightarrow p^2+2012⋮3\)
\(\Rightarrow p^2+2012\) là hợp số.
- Nếu \(p=3k+1\) thì \(p^2+2012=\left(3k+1\right)^2+2012=3k\left(3k+1\right)+3k+1+2012=9k^2+3k+3k+2013=9k^2+6k+2013\)
Có \(\hept{\begin{cases}9k^2⋮3\\6k⋮3\\2013⋮3\end{cases}\Rightarrow9k^2+6k+2013⋮3}\)
\(\Rightarrow p^2+2012⋮3\)
\(\Rightarrow p^2+2012\) là hợp số. (1)
- Nếu \(p=3k+2\) thì \(p^2+2012=\left(3k+2\right)^2+2012=3k\left(3k+2\right)+2\left(3k+2\right)+2012=9k^2+6k+6k+4+2012=9k^2+12k+2016\)
Có \(\hept{\begin{cases}9k^2⋮3\\12k⋮3\\2016⋮3\end{cases}\Rightarrow9k^2+6k+2016⋮3}\)
\(\Rightarrow p^2+2012⋮3\)
\(\Rightarrow p^2+2012\) là hợp số. (2)
Từ (1) và (2) suy ra
\(p^2+2012\) là hợp số.
Vây...