Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Khi \(x=1,44\): \(A=\frac{1,44+7}{\sqrt{1,44}}=\frac{8,44}{1,2}=\frac{211}{30}\)
\(B=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-1}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\)(ĐK: \(x\ge0,x\ne9\))
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2x-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x-3\sqrt{x}+2x+5\sqrt{x}-3-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(S=\frac{1}{B}+A=\frac{\sqrt{x}-3}{\sqrt{x}}+\frac{x+7}{\sqrt{x}}=\frac{x+\sqrt{x}+4}{\sqrt{x}}=\sqrt{x}+\frac{4}{\sqrt{x}}+1\)
\(\ge2\sqrt{\sqrt{x}.\frac{4}{\sqrt{x}}}+1=5\)
Dấu \(=\)khi \(\sqrt{x}=\frac{4}{\sqrt{x}}\Leftrightarrow x=4\)(thỏa mãn)
1) Tại x = 16 thì:
\(A=\frac{2\sqrt{16}+1}{16+\sqrt{16}+1}=\frac{9}{21}=\frac{3}{7}\)
2) Ta có:
\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{1-x}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(P=\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\div\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)\)
\(P=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
3) Ta có: \(M=\frac{P}{A}=\frac{\frac{2\sqrt{x}+1}{\sqrt{x}+1}}{\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}}=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}=\frac{x}{\sqrt{x}+1}+1\ge1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x=0\)
Vậy Min(M) = 1 khi x = 0
a( \(P=\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\)(ĐKXĐ : \(1\le x\ne3\))
\(=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\left(x-3\right)}=\sqrt{x-1}+\sqrt{2}\)
b) \(x=4\left(2-\sqrt{3}\right)\Rightarrow x-1=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\)
Thay vào P được : \(P=2-\sqrt{3}+\sqrt{2}\)
c) Với mọi \(x\ge1,x\ne3\)ta luôn có \(\sqrt{x-1}\ge0\Rightarrow\) \(P=\sqrt{x-1}+\sqrt{2}\ge\sqrt{2}\). Dấu "=" xảy ra khi x = 1
Vậy Min P = \(\sqrt{2}\Leftrightarrow x=1\)
2. a) \(Q=\frac{\sqrt{x+2}-1}{x+1}\)(ĐKXĐ: \(-2\le x\ne-1\))
\(=\frac{\left(\sqrt{x+2}-1\right)\left(\sqrt{x+2}+1\right)}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\frac{x+2-1}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\frac{x+1}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\frac{1}{\sqrt{x+2}+1}\)b) \(x=40,25=\frac{161}{4}\Rightarrow x+2=\frac{169}{4}\Rightarrow Q=\frac{1}{\sqrt{\frac{169}{4}}+1}=\frac{1}{\frac{13}{2}+1}=\frac{2}{15}\)
c) Ta có : \(Max_Q\Leftrightarrow Min_{\left(\sqrt{x+2}+1\right)}\)
Mà : \(\sqrt{x+2}+1\ge1\) với mọi \(-2\le x\ne-1\)
Do đó Max Q = 1 \(\Leftrightarrow x=-2\)
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia