\(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn cho mình xin đa thức P ban đầu

2 tháng 7 2019

cái nào bạn

15 tháng 10 2017

a)  B= \(\frac{1}{\sqrt{a}}\)(ĐKXĐ: a,b>0)   B) Khi a= \(6+2\sqrt{5}\)thì B=\(\frac{1}{\sqrt{\left(\sqrt{5}+1\right)^2}}\)=\(\frac{1}{\sqrt{5}+1}\)     C) Do \(\sqrt{a}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>-1\)

31 tháng 8 2019

giải rõ hộ với bạn

4 tháng 10 2016

ui khó quá mình không biết đâu

29 tháng 11 2021

sao tổng lại lớn hơn hiệu

20 tháng 7 2016

\(\frac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)}{a-b}=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2\left(1-1\right)}{a-b}=0\)