\(\frac{ax^2+bx+c}{a_1x^2+b_1x+c_1}\).CMR nếu a/a1=b/b1=c/c<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

khó quá

12 tháng 7 2017

đúng là khó thiệt

30 tháng 10 2015

Áp dụng tính chất cua dãy tỉ số bằng nhau ta có:

\(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=\frac{ax^2}{a_1x^2}=\frac{bx}{b_1x}=\frac{c}{c_1}=\frac{ax^2+bx+c}{a_1x^2+b_1x+c_1}=P\)

=>\(P=\frac{a}{a_1}\)

=>Giá trị của P phụ thuộc vào a và a1

VậyGiá trị của P không phụ thuộc vào x

30 tháng 10 2015

Câu trả lời của mình đang chờ duyệt

30 tháng 11 2015

Đặt \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)=>\(a=k\cdot a_1\)\(b=k\cdot b_1\)\(c=k\cdot c_1\)

=> \(P=\frac{a\cdot x^2+b\cdot x+c}{a_1\cdot x^2+b_1\cdot x+c_1}=\frac{k\cdot a_1\cdot x^2+k\cdot b_1\cdot x+k\cdot c_1}{a_1\cdot x^2+b_1\cdot x+c_1}=\frac{k\cdot\left(a_1\cdot x^2+b_1\cdot x+c_1\right)}{a_1\cdot x^2+b_1\cdot x+c_1}=k\)

Vậy khi \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)thì \(P\) luôn bằng k với mọi x

(Nhớ tick cho mình nha)