K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2021

P=\(\frac{3}{\sqrt{x}+3}\)

vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\)

\(\Rightarrow P=\)\(\frac{3}{\sqrt{x}+3}\)\(\ge\frac{3}{3}=1\)

Vậy P\(\ge1\)

12 tháng 12 2015

cm bai toan phu 

a3+b3\(\ge ab\left(a+b\right)\)

ta co \(\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

=>bai toan phu dung 

=>\(a^3+b^3\ge ab\left(a+b\right)\)

=>a3+b3+1\(\ge ab\left(a+b+c\right)\)

=>A\(\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{z}{\left(x+y+z\right)}+\frac{x}{\left(x+y+z\right)}+\frac{y}{\left(x+y+z\right)}=1\)

MaxA=1<=>x=y=z=1

22 tháng 11 2017

Đặt: 

\(\frac{3-4x}{x^2+1}=a\Rightarrow ax^2+4x+a-3=0\) Phương trình bậc hai ẩn x có nghiệm

\(\Delta'=a^2-3a-4\le0\Leftrightarrow-1\le a\le4\)

\(GTNN:-1\)

\(GTLN:4\)

14 tháng 11 2017

\(A=-|x-\frac{3}{4}|-3\)

Vì \(|x-\frac{3}{4}|\ge0\forall x\)

\(\Rightarrow-|x-\frac{3}{4}|\le-0\forall x\)

\(\Rightarrow-|x-\frac{3}{4}|-3\le-0-3\)

\(\Rightarrow-|x-\frac{3}{4}|-3\le-3\)

\(\Rightarrow GTLN\)là \(-3\)

14 tháng 11 2017

Giải thế này ko bt có đúng ko, sai thì sửa lại nhé.

Giải:

Ta có: \(A_{max}\Rightarrow-\left|x+\frac{3}{4}\right|+3_{max}\Rightarrow-\left|x+\frac{3}{4}\right|_{min}\)

\(\Rightarrow-\left|x+\frac{3}{4}\right|_{max}\) mà \(-\left|x+\frac{3}{4}\right|\ge0\)

\(\Rightarrow-\left|x+\frac{3}{4}\right|_{mon}=0\)

\(\Rightarrow A_{max}=0+3=3\)

NV
21 tháng 5 2019

\(A=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+x+y}\ge\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}+x+y}=\frac{2}{3}\)

\(\Rightarrow A_{min}=\frac{2}{3}\) khi \(x=y=\frac{1}{2}\)

21 tháng 5 2019

Thankshaha

9 tháng 8 2016

\(a.\) 

\(\text{*)}\) Áp dụng bđt  \(AM-GM\)  cho hai số thực dương  \(x,y,\)  ta có:

\(x+y\ge2\sqrt{xy}=2\)  (do  \(xy=1\)  )

\(\Rightarrow\)  \(3\left(x+y\right)\ge6\)

nên  \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)

\(\Rightarrow\)  \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)

\(\text{*)}\)  Tiếp tục áp dụng bđt  \(AM-GM\)  cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\)  ta có:

\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)

Do đó,  \(D\ge6+5=11\)

Dấu  \("="\)  xảy ra khi  \(x=y=1\)

Vậy,  \(D_{min}=11\)  \(\Leftrightarrow\)  \(x=y=1\)

\(b.\) Bạn tìm điểm rơi rồi báo lại đây

9 tháng 8 2016

b

\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)

\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)

\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)

Dấu bằng xảy ra khi \(x=2\)

13 tháng 6 2018

\(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)

\(P=a-\frac{2abc}{a^2+2bc}+b-\frac{2abc}{b^2+2ca}+c-\frac{2abc}{c^2+2ab}+3abc\)

\(P=\left(a+b+c\right)-2abc\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)+3abc\)

\(P=3-2abc\left(\frac{1}{a^2+2ab}+\frac{1}{b^2+2bc}+\frac{1}{c^2+2ca}\right)+3abc\)(Do a+b+c=3)

Áp dụng BĐT Schwarz cho 3 phân số:

\(\frac{1}{a^2+2abc}+\frac{1}{b^2+2bc}+\frac{1}{c^2+2ca}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(=\frac{9}{\left(a+b+c\right)^2}=\frac{9}{3^2}=1\)

\(\Rightarrow P\le3-2abc+3abc=3+abc\)

Áp dụng BĐT Cauchy cho 3 số a,b,c: \(abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{3^3}{27}=1\)

\(\Rightarrow P\le3+1=4\).

Vậy \(Max_P=4.\)Đẳng thức xảy ra khi a=b=c=1.

13 tháng 6 2018

Đợi chút; phần áp dụng BĐT schwarz, cái đầu tiên mình gõ thừa chữ "c" ở mẫu thức, bn sửa đi nhé.