Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn đặt \(\sqrt{x}=a\) , a> 0
Thay \(\sqrt{x}=a\) vô biểu thức => rút gọn ra => thay trở lại
a. ĐKXĐ : \(\hept{\begin{cases}x\ge0\\y\ge0\\y-x\ne0\end{cases}}\)<=> \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\)
b. \(R=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(\Leftrightarrow R=\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{y-x}\right):\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(\Leftrightarrow R=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right):\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(\Leftrightarrow R=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(\Leftrightarrow R=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{x-\sqrt{xy}+y}\)
\(\Leftrightarrow R=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
c. Với \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\)thì \(\sqrt{xy}\ge0\) ( 1 )
Ta có : \(x-\sqrt{xy}+y=\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}\)
Mà \(\orbr{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\\\left(1\right)\end{cases}}\)=> \(x-\sqrt{xy}+y\ge0\)( 2 )
Từ ( 1 ) và ( 2 ) => \(R\ge0\) ( Đpcm )
Đặt \(\sqrt{x}=a\) , a \(\ge0\)
a , Khi đó biểu thức trở thành :
Q = \(\frac{2a-9}{a^2-5a+6}-\frac{a+3}{a-2}-\frac{2a+1}{3-a}\)
Đến đây làm như lớp 8 thôi
a. ĐKXĐ : \(\orbr{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\end{cases}}\)<=> \(\orbr{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b. \(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(\Leftrightarrow P=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(\Leftrightarrow P=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
là bằng 2 phần 3 phải ko