\(\frac{-3}{\sqrt{x}+3}\)

a, Tìm x để P < \(\frac{-...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2020

a) đk: \(x\ge0\)

Ta có: \(P< -\frac{1}{3}\)

\(\Leftrightarrow\frac{-3}{\sqrt{x}+3}+\frac{1}{3}< 0\)

\(\Leftrightarrow\frac{\sqrt{x}-6}{\sqrt{x}+3}< 0\)

Nhận thấy \(\sqrt{x}-6< \sqrt{x}+3\)

\(\Rightarrow\hept{\begin{cases}\sqrt{x}-6< 0\\\sqrt{x}+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 6\\\sqrt{x}>-3\end{cases}}\Leftrightarrow0\le x< 36\)

b) Ta có: \(Q=5+P=5-\frac{3}{\sqrt{x}+3}\)

Mà \(\sqrt{x}+3\ge3\left(\forall x\ge0\right)\Leftrightarrow\frac{3}{\sqrt{x}+3}\le1\left(\forall x\ge0\right)\)

\(\Leftrightarrow5-\frac{3}{\sqrt{x}+3}\ge4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x=0\)

Vậy Min(Q) = 4 khi x = 0

25 tháng 11 2018

có ai giúp mình giải bài này không please

8 tháng 5 2020

giúp mik vs cảm ơn mn

24 tháng 7 2018

a) ĐKXĐ:  \(x>0;x\ne9\)

\(A=\left(\frac{1}{\sqrt{x}+3}+\frac{3}{x-9}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\frac{\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\frac{1}{\sqrt{x}+3}\)

24 tháng 7 2018

b)  \(A=\frac{1}{5}\) \(\Rightarrow\)\(\frac{1}{\sqrt{x}+3}=\frac{1}{5}\)

\(\Rightarrow\)\(\sqrt{x}+3=5\)

\(\Leftrightarrow\)\(\sqrt{x}=2\)

\(\Leftrightarrow\)\(x=4\)(t/m ĐKXĐ)

Vậy...

6 tháng 8 2016

a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\) 

\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{-3}{\sqrt{x}+3}\)

 

 

 

 

11 tháng 3 2020

a) \(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\frac{4\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{4\sqrt{x}-12}{x-9}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{x+3\sqrt{x}}{x-9}\)

\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13-x-3\sqrt{x}}{x-9}\)

\(=\frac{x-25}{x-9}\)

b) \(P=\frac{A}{B}=\frac{\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}}{\frac{\sqrt{x}+5}{\sqrt{x}-3}}\)

\(=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)

\(\sqrt{P}< \frac{1}{3}\Rightarrow\sqrt{\frac{\sqrt{x}-5}{\sqrt{x}+3}}< \frac{1}{3}\)

\(\Rightarrow\frac{\sqrt{x}-5}{\sqrt{x}+3}< \frac{1}{9}\Leftrightarrow9\sqrt{x}-45< \sqrt{x}+3\)

\(\Leftrightarrow8\sqrt{x}< 48\Leftrightarrow\sqrt{x}< 6\Rightarrow0\le x< 36\)

11 tháng 3 2020

\(a,\)\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(b,P=\frac{A}{B}=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+5}{\sqrt{x}-3}\)

\(=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\left(\sqrt{x}-3\right)}{\sqrt{x}+5}=\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}\)

Để \(\sqrt{P}< \frac{1}{3}\Rightarrow\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}< \frac{1}{3}\)

\(\Rightarrow\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}-\frac{1}{3}< 0\)

\(\Rightarrow\frac{3\left(2x+3\sqrt{x}-1\right)-\sqrt{x}-5}{3\left(\sqrt{x}+5\right)}< 0\)

\(\Rightarrow6x+9\sqrt{x}-3-\sqrt{x}-5< 0\)( do \(3\left(\sqrt{x}+5\right)>0\))

\(\Rightarrow6x-8\sqrt{x}-8< 0\Rightarrow3x-4\sqrt{x}-4< 0\)

\(\Rightarrow3x-6\sqrt{x}+2\sqrt{x}-4< 0\)

\(\Rightarrow3\sqrt{x}\left(\sqrt{x}-2\right)+2\left(\sqrt{x}-2\right)< 0\)

\(\Rightarrow\left(\sqrt{x}-2\right)\left(3\sqrt{x}+2\right)< 0\)

Vì \(3\sqrt{x}+2>0\Rightarrow\sqrt{x}-2< 0\)

\(\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

Vậy để \(\sqrt{P}< \frac{1}{3}\)thì \(0\le x< 4\)