Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)
\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)
\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)
` @ \color{Red}{m}`
` \color{lightblue}{Answer}`
\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x}{x+1}\)
__
\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\\ =\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{2x-6}{2x\left(x+3\right)}\\ =\dfrac{3x-\left(2x-6\right)}{2x\left(x+3\right)}\\ =\dfrac{3x-2x+6}{2x\left(x+3\right)}\\ =\dfrac{x+6}{2x\left(x+3\right)}\)
__
\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\\ =\dfrac{1}{1-x}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{1-x}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1+x-2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1}{1+x}\)
\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\left(dkxd:x\ne\pm1\right)\)
\(=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x}{x+1}\)
========================
\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\left(dkxd:x\ne\pm3;x\ne0\right)\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\)
\(=\dfrac{3x-2\left(x-3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{3x-2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{x+6}{2x^2+6x}\)
==========================
\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\left(dkxd:x\ne\pm1\right)\)
\(=-\dfrac{1}{x-1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-\left(x+1\right)+2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x-1+2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{x+1}\)
ĐKXĐ: \(x\notin\left\{1;\dfrac{1}{2}\right\}\)
\(\left(\dfrac{1}{x-1}+2+\dfrac{2x^3+x^2-x}{1-x^3}\right):\dfrac{1-2x}{x^3+x-2}\)
\(=\left(\dfrac{1}{x-1}+2-\dfrac{2x^3+x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^3+x-2}{1-2x}\)
\(=\dfrac{x^2+x+1+2\left(x^3-1\right)-2x^3-x^2+x}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^3-x^2+x^2-x+2x-2}{-\left(2x-1\right)}\)
\(=\dfrac{2x+1+2x^3-2-2x^3}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x^2+x+2\right)}{-\left(2x-1\right)}\)
\(=\dfrac{2x-1}{x^2+x+1}\cdot\dfrac{-\left(x^2+x+2\right)}{2x-1}=\dfrac{-x^2-x-2}{x^2+x+1}\)
`a,(25xy^3(2x-y)^2)/(75xy^2(y-2x))(x,y ne 0)(y ne 2x)`
`=(25xy^3(y-2x)^2)/(75xy^2(y-2x))`
`=(y(y-2x))/3`
`b,(x^2-y^2)/(x^2-y^2+xz-yz)`
`=((x-y)(x+y))/((x-y)(x+y)+z(x-y))`
`=(x+y)/(x+y+z)`
`c,((2x+3)-x^2)/(x^2-1)(x ne +-1)`
`=(-(x^2-3x+x-3))/((x-1)(x+1))`
`=(-x(x-3)+x-3)/((x-1)(x+1))`
`=((x-3)(1-x))/((x-1)(x+1))`
`=(3-x)/(1+x)`
`d,(3x^3-7x^2+5x-1)/(2x^3-x^2-4x+3)`
`=(3x^3-3x^2-4x^2+4x+x-1)/(2x^3-2x^2+x^2-x-3x+3)`
`=(3x^2(x-1)-4x(x-1)+x-1)/(2x^2(x-1)+x(x-1)-3(x-1))`
`=(3x^2-4x+1)/(2x^2+x-3)`
`=(3x^2-3x-x+1)/(2x^2-2x+3x-3)`
`=(3x(x-1)-(x-1))/(2x(x-1)+3(x-1))`
`=(3x-1)/(2x+3)`
a) Ta có: \(\dfrac{25xy^3\cdot\left(2x-y\right)^2}{75xy^2\cdot\left(y-2x\right)}\)
\(=\dfrac{25xy^2\cdot y\cdot\left(y-2x\right)^2}{25xy\cdot y\cdot\left(y-2x\right)\cdot3}\)
\(=\dfrac{y\left(y-2x\right)}{3}\)
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(A=\left(\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+2}{2x+2}\right)\cdot\dfrac{2x^2-2}{5}\)
\(=\left(\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\dfrac{6}{2\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+2\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\right)\cdot\dfrac{2x^2-2}{5}\)
\(=\left(\dfrac{x^2+2x+1+6-\left(x^2-x+2x-2\right)}{2\left(x+1\right)\left(x-1\right)}\right)\cdot\dfrac{2x^2-2}{5}\)
\(=\dfrac{x^2+2x+7-x^2-x+2}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{2\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{x+9}{5}\)
a)
\(DKXD:\left[{}\begin{matrix}x^2+x\ne0\\x\ne0\\x+1\ne0\end{matrix}\right.< =>\left[{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
b)
\(\left(\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\right)\cdot\dfrac{x+1}{3}\)
\(=\left(\dfrac{2x^2-1}{x\left(x+1\right)}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\right)\cdot\dfrac{x+1}{3}\)
\(=\left(\dfrac{2x^2-1}{x\left(x+1\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}+\dfrac{3x}{x\left(x+1\right)}\right)\cdot\dfrac{x+1}{3}\)
\(=\left(\dfrac{2x^2-1-x^2+1+3x}{x\left(x+1\right)}\right)\cdot\dfrac{x+1}{3}\)
\(=\dfrac{x^2+3x}{x\left(x+1\right)}\cdot\dfrac{x+1}{3}\\ =\dfrac{x\left(x+3\right)\cdot\left(x+1\right)}{x\left(x+1\right)\cdot3}\\ =\dfrac{x+3}{3}\)
1: Ta có: \(A=\left(\dfrac{x^2-16}{x-4}-1\right):\left(\dfrac{x-2}{x-3}+\dfrac{x+3}{x+1}+\dfrac{x+2-x^2}{x^2-2x-3}\right)\)
\(=\left(x+4-1\right):\left(\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}+\dfrac{-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\right)\)
\(=\left(x+3\right):\dfrac{x^2+x-2x-2+x^2-9-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\)
\(=\left(x+3\right):\dfrac{x^2-9}{\left(x-3\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-3\right)\left(x+1\right)}{x^2-9}\)
\(=x+1\)
ĐKXĐ: \(x\notin\left\{4;3;-1\right\}\)
2: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì \(x+1⋮x^2+x+1\)
\(\Leftrightarrow x^2+x⋮x^2+x+1\)
\(\Leftrightarrow x^2+x+1-1⋮x^2+x+1\)
mà \(x^2+x+1⋮x^2+x+1\)
nên \(-1⋮x^2+x+1\)
\(\Leftrightarrow x^2+x+1\inƯ\left(-1\right)\)
\(\Leftrightarrow x^2+x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x^2+x\in\left\{0;-2\right\}\)
\(\Leftrightarrow x^2+x=0\)(Vì \(x^2+x>-2\forall x\))
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Vậy: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì x=0
\(\dfrac{x^3-3}{x^2-2x-3}\)\(-\dfrac{2\left(x-3\right)}{x+1}\)\(+\dfrac{x+3}{3-x}\)
=\(\dfrac{x^3-3}{\left(x+1\right)\left(x-3\right)}\)\(-\dfrac{2\left(x-3\right)}{x+1}\)\(-\dfrac{x+3}{x-3}\)
=\(\dfrac{x^3-3-2x^2+12x-18-x^2-4x-3}{\left(x+1\right)\left(x-3\right)}\)
=\(\dfrac{x^3-3x^2+8x-24}{\left(x+1\right)\left(x-3\right)}\)
=\(\dfrac{\left(x-3\right)\left(x^2+8\right)}{\left(x-3\right)\left(x+1\right)}\)=\(\dfrac{x^2+8}{x+1}\)