Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do : \(\overline{abc}⋮37\)
\(\Leftrightarrow100a+10b+c⋮37\)
\(\Rightarrow1000a+100b+10c⋮37\)
Lại có : \(999a⋮37\)
\(\Rightarrow1000a-999a+100b+10c⋮37\)
\(\Leftrightarrow100b+10c+a⋮37\)
\(\Leftrightarrow1000b+100c+10a⋮37\)
\(\Leftrightarrow1000b-999b+100c+10a⋮37\)
\(\Leftrightarrow100c+10a+b⋮37\)
hay : \(\overline{cab}⋮37\) (ddpcm)
b) Ta có : \(xy+12=x+y\)
\(\Leftrightarrow x+y-xy=12\)
\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=11\)
\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=11\)
Do đó : x-1 và y-1 là các cặp ước của 11
Rồi bạn lập bảng xét các ước của 11.
a.Xét tổng\(11.\overline{abc}+\overline{cab}\)ta có:
\(11.\overline{abc}+\overline{cab}=1110a+111b+111c=111\left(10a+b+c\right)=37.3\left(10a+b+c\right)⋮37\)
Mà \(11.\overline{abc}⋮37\Rightarrow\overline{cab}⋮37\)
\(\overline{abc}+\overline{bca}+\overline{cab}=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)
\(=111\left(a+b+c\right)=37\times3\times\left(a+b+c\right)⋮37\)
có đấy
vd:
370000:37=10000 nha
thì 700003:37=18919
nếu thấy đung thì k nhé
1)aaa=111a=37.3.a\(⋮37\)(đpcm)
2)aaa+bbb=111a+111b=111(a+b)\(⋮\)11(đpcm)
Dễ mà
\(\overline{aaa}+\overline{bbb}=111.a+111.b=111\left(a+b\right)=37\times3\times\left(a+b\right)⋮37\)
(abc) chia hết cho 37
->100.a + 10.b + c chia hết cho 37
-> 1000.a + 100.b + 10.c chia hết cho 37
-> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
-> 100.b + 10.c + a = (bca) chia hết cho 37 (bca) chia hết cho 37
-> 100.b+10.c+a chia hết cho 37
-> 1000.b + 100.c + 10.a chia hết cho 37
-> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
-> 100.c + 10.a + b = (cab) chia hết cho 37