K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2022

a) tứ giác AOBM nội tiếp thì có tâm đường tròn là trung điểm OM

cần CM tứ giác OIMB nội tiếp: dùng tổng hai góc đối cộng với nhau bằng 180o, mà đã có OBM=90o, mà I là trung điểm dây cung CD nên OI vuông góc CD luôn => OIM=90o

Vậy tứ giác OIMB nội tiếp thì tâm đường tròn cũng tại trung điểm OM luôn

b) 5 điểm A,I,O,B,M cùng thuộc 1 đtron

=> tứ giác AIOB nội tiếp => góc AIB=AOB (cùng chắn cung)

tứ giác AIOM nội tiếp => góc AIM=AOM (ccc)

mà góc AOM=1/2AOB=AIM=1/2AIB

=> BIM=1/2AIB (đpcm

Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD=...
Đọc tiếp

Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD= MA² = MO² –R² . c. Chứng minh: Các tiếp tuyến tại C,D của đường tròn (O;R) cắt nhau tại một điểm nằm trên đường thắng AB. d. Chứng minh: Đường thắng AB luôn đi qua một điểm cố định. e, Chứng minh: Một đường thắng đi qua O vuông góc với MO cắt các tia MA, MB lần lượt tại PQ. Tìm GTNN của SMPO. Tìm vị trí điểm M để AB nhỏ nhất.

 

0
22 tháng 4 2023

vì AM là tiếp tuyến của ( O) => OA⊥AM =>ΔOAM vuông ở A   

=> điểm A thuộc đường tròn đường kính OM

vì BM là tiếp tuyến của (O) => OB⊥BM =>ΔOBM vuông ở B

=> điểm B thuộc đường tròn đường kính OM 

Vì OH⊥MI=>ΔOHM vuông tại H

=> điểm H thuộc đường tròn đường kính OM

=> 4 điểm O,A,M,B,H cùng thuộc đường tròn đường kính OM

27 tháng 3 2022

a, Ta có MA ; MB lần lượt là tiếp tuyến (O) 

=> ^MAO = ^MBO = 900

Vì N là trung điểm CD => ON vuông CD 

Xét tứ giác OAMB có ^MAO + ^MBO = 1800

mà 2 góc này đối Vậy tứ giác OAMB là tứ giác nt 1 đường tròn 

Xét tứ giác NAMO có ^MAO = ^MNO = 900

mà 2 góc này kề, cùng nhìn cạnh MO 

Vậy tứ giác NAMO là tứ giác nt 1 đường tròn 

mà 2 tứ giác này cùng chứ tam giác OAM 

Vậy M;A;N;O;B nt 1 đường tròn 

b, Ta có MA = MB ( tc tiếp tuyến cắt nhau ) ; OA = OB 

Vậy OM là đường trung trực đoạn AB 

Xét tam giác MAO vuông tại A có AH là đường cao 

AM^2 = MH.MO ( hệ thức lượng ) 

c, Xét 5 điểm M;A;N;O;B nt 1 đường tròn có 

^MNA = ^MBA ( góc nt chắn cung AM ) 

^MNB = ^MAB ( góc nt chắn cung MB ) 

mà MA = MB ( tc tiếp tuyến cắt nhau ) 

=> MAB cân tại M => ^MAB = ^MBA 

=> ^ANM = ^MNB 

=> NM là phân giác ^ANB 

d, Ta có NK là pg của ^ANB nên \(\dfrac{AK}{KB}=\dfrac{NA}{NB}\)

Lại có NK vuông NS => NS là pg ngoài tam giác ANB \(\dfrac{SA}{SB}=\dfrac{NA}{NB}\)

\(\Rightarrow AK.SB=SA.KB\)