Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ OK vuông góc với AB ta có AK=KB= \(\frac{R\sqrt{3}}{2}\)
áp dụng hệ thức lượng trong tam giác vuông KBO ta có :
\(sin\widehat{KOB}=\frac{KB}{OB}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\widehat{KOB}=60^0\)
Tương tự ta có :\(\widehat{AOK}=60^0\)
gọi sđ cung AnB là số đo cung AB nhỏ .
gọi sđ cung AmB là số đo cung AB lớn .
\(\Rightarrow\widehat{AOB}=120^0\Rightarrow sđAnB=120^0\)
mà \(sđAnB+sđAmB=360^0\)
\(\Rightarrow sđAmB=240^0\)
ta có \(\widehat{AMB}=\frac{sđAmB}{2}=\frac{240^0}{2}=120^0\)
Kẻ OH⊥AB tại H
Xét ΔOAB có OA=OB(=R)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOAB cân tại O(cmt)
mà OH là đường cao ứng với cạnh đáy AB(gt)
nên OH là đường trung tuyến và cũng là đường phân giác ứng với cạnh AB(Định lí tam giác cân)
hay H là trung điểm của AB
\(\Leftrightarrow AH=\dfrac{AB}{2}=\dfrac{R\sqrt{3}}{2}\)
Xét ΔOAH vuông tại H có
\(\sin\widehat{AOH}=\dfrac{AH}{AO}=\dfrac{R\cdot\dfrac{\sqrt{3}}{2}}{R}=\dfrac{\sqrt{3}}{2}\)
hay \(\widehat{AOH}=60^0\)
\(\Leftrightarrow\widehat{AOB}=2\cdot\widehat{AOH}=120^0\)
Số đo cung lớn AB là: \(360^0-120^0=240^0\)
Đáp án là A
Dây cung AB = R ⇒ ΔOAB là tam giác đều ⇒ ∠(AOB) = 60 0
⇒ số đo cung nhỏ AB là 60 0
Xét ΔOAB có OA=OB=AB
nên ΔOAB đều
=>\(\widehat{AOB}=60^0\)
Xét (O) có \(\widehat{AMB}\) là góc nội tiếp chắn cung AB
nên \(\widehat{AMB}=\dfrac{1}{2}\cdot\widehat{AOB}=\dfrac{1}{2}\cdot60^0=30^0\)
Tham khảo:
Kẻ OH⊥AB tại H
Xét ΔOAB có OA=OB(=R)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOAB cân tại O(cmt)
mà OH là đường cao ứng với cạnh đáy AB(gt)
nên OH là đường trung tuyến và cũng là đường phân giác ứng với cạnh AB(Định lí tam giác cân)
hay H là trung điểm của AB
⇔AH=AB/2=R√3/2
Xét ΔOAH vuông tại H có
sinˆAOH=AH/AO=R⋅√3/2/R=√3/2
hay ˆAOH=60 độ
⇔ˆAOB=2⋅ˆAOH=120 độ (số đo cung nhỏ nhé)
Số đo cung lớn AB là: 360−120=240 độ
Chúc em học tốt