K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔODE cân tại O có OI là trung tuyến

nên OI vuông góc DE

góc OIA+góc OBA=180 độ

=>OIAB nội tiếp

b: Xét ΔKCE và ΔKBC có

góc KCE=góc KBC

góc K chung

=>ΔKCE đồng dạng với ΔKBC

=>KC/KB=KE/KC

=>KC^2=KB*KE

 

14 tháng 11 2023

a:

Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC; OA;AO lần lượt là phân giác của \(\widehat{BOC};\widehat{BAC}\)

Xét ΔOBA vuông tại B có \(cosBOA=\dfrac{OB}{OA}=\dfrac{1}{\sqrt{2}}\)

=>\(\widehat{BOA}=45^0\)

OA là phân giác của \(\widehat{BOC}\)

=>\(\widehat{BOC}=2\cdot\widehat{BOA}=90^0\)

Xét tứ giác OBAC có \(\widehat{OBA}=\widehat{BOC}=\widehat{OCA}=90^0\)

nên OBAC là hình chữ nhật

Hình chữ nhật OBAC có OB=OC

nên OBAC là hình vuông

b: Xét (O) có

DM,DB là tiếp tuyến

Do đó: OD là phân giác của góc BOM và DB=DM

Xét (O) có

EM,EC là tiếp tuyến

Do đó: EM=EC và OE là phân giác của góc MOC

\(\widehat{DOE}=\widehat{DOM}+\widehat{MOE}\)

\(=\dfrac{1}{2}\left(\widehat{BOM}+\widehat{MOC}\right)\)

\(=\dfrac{1}{2}\cdot\widehat{BOC}=\dfrac{1}{2}\cdot90^0=45^0\)

c: Gọi giao điểm của OA và BC là H

AB=AC

OB=OC

Do đó: OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

\(\widehat{KBA}+\widehat{KBO}=\widehat{OBA}=90^0\)

\(\widehat{CBK}+\widehat{BKO}=90^0\)(ΔBHK vuông tại H)

mà \(\widehat{OBK}=\widehat{OKB}\)(OK=OB)

nên \(\widehat{KBA}=\widehat{CBK}\)

=>BK là phân giác của góc ABC

Xét ΔABC có

BK,AK là các đường phân giác

Do đó: K là tâm đường tròn nội tiếp ΔABC

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
22 tháng 1 2018

a, Học sinh tự chứng minh

b,  N E C ^ = C B E ^ = 1 2 s đ C E ⏜

=> DNEC ~ DNBE (g.g) => ĐPCM

c, DNCH ~ DNMB (g.g)

=> NC.NB = NH.NM = N E 2

DNEH ~ DNME (c.g.c)

=>  N E H ^ = E M N ^

d,  E M N ^ = E O M ^  (Tứ giác NEMO nội tiếp)

=>  N E H ^ = N O E ^ => EH ^ NO

=> DOEF cân tại O có ON là phân giác =>  E O N ^ = N O F ^

=> DNEO = DNFO vậy  N F O ^ = N E O ^ = 90 0 => ĐPCM

24 tháng 1 2022

địt mẹ mày giải như đầu buồi

vt góc với tam giác sai mẹ hết