Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA
=>AI*AO=2R^2
Xét ΔBDE vuông tại D có DC vuông góc BE
nên ΔBDE vuông tại D
=>BC*BE=BD^2=4R^2
=>BC*BE+AI*AO=6R^2
A C D B H K a) Ta có OB=OC (cùng là bán kính (O))
AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)
→O và A cách đều 2 đầu đoạn thẳng BC
→OA là đường trung trực của BC
→OA \(\perp\) BC
Xét Δ OBA vuông tại B có đường cao BH:
OB2= OH . OA (hệ thức lượng)
mà OB=R (OB là bán kính của (O))
→R2 =OH.OA
b)Xét ΔDBC nội tiếp (O) có đường kính BD
→ΔDBC vuộng tại C có cạnh huyền BD
→BC\(\perp\) CD mà OA\(\perp\)BC (cmt)
→OA song song CD
Ta có : AB song song CK (cùng \(\perp\) BD)
Xét ΔOBA vuông tại B
ΔDKC vuông tại K , có
\(\widehat{BOA}\) = \(\widehat{KDC}\) ( 2 góc đồng vị của OA song song CD)
→ΔOBA đồng dạng ΔDKC (g.n)
→\(\frac{OB}{DK}\) =\(\frac{OA}{DC}\) =\(\frac{BA}{KC}\) (tỉ số đồng dạng)
→OA . CK=AB. CD
mà AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)
→AC . CD= CK . OA (đpcm)
O B C A D M N H
a) Ta thấy: Đường tròn (O) có đường kính CD và điểm M thuộc cung CD => ^CMD = 900 => ^CMA = 900.
Đường tròn (O) có 2 tiếp tuyến AB và AC => AB=AC => \(\Delta\)ABC cân tại A
Mà AO là phân giác ^BAC (T/c 2 tiếp tuyến cắt nhau) => AO vuông góc BC hay AH vuông góc BC
=> ^AHC = 900
Xét tứ giác AMHC: ^AHC = ^CMA = 900 => Tứ giác AMHC nội tiếp đường tròn (đpcm).
b) Tứ giác AMHC nội tiếp đường tròn => ^AHM = ^ACM (Cùng chắn cung AM)
Xét \(\Delta\)ACD: ^ACD = 900; CM vuông góc AD => ^ACM = ^CDM
=> ^AHM = ^CDM (1)
Dễ thấy tứ giác BDCM nội tiếp (O) => ^CDM = ^CBM (2)
Từ (1) và (2) => ^AHM = ^CBM hay ^NHM = ^HBM
Mà ^NHM + ^BHM = 900 nên ^HBM + ^BHM = 900 => \(\Delta\)BMH vuông đỉnh M
=> ^HMN = 900 => ^HMC = ^NMA (Cùng phụ ^CMN)
Xét \(\Delta\)MHC và \(\Delta\)MNA: ^HMC = ^NMA (cmt); ^HCM = ^NAM (Do tứ giác AMHC nột tiếp)
=> \(\Delta\)MHC ~ \(\Delta\)MNA (g.g) => \(\frac{HC}{NA}=\frac{MH}{MN}\)hay \(\frac{NA}{HC}=\frac{MN}{MH}\)(3)
Dễ chứng minh: \(\Delta\)HMN ~ \(\Delta\)BMH (g.g) => \(\frac{HN}{BH}=\frac{MN}{HM}\)(4)
Từ (3) và (4) => \(\frac{NA}{HC}=\frac{HN}{BH}\).
Lại có: \(\Delta\)ABC cân tại A có đường cao AH => AH là đường trung tuyến => HC=BH
Từ đó suy ra: NA = HN => N là trung điểm của AH (đpcm).
a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK
a: góc KOA+góc BOA=90 độ
góc KAO+góc COA=90 độ
mà góc BOA=góc COA
nên góc KOA=góc KAO
=>ΔKAO cân tại K
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
=>góc BOA=60 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA=R
=>I là trung điểm của OA
ΔKAO cân tại K
mà KI là trung tuyến
nên KI vuông góc với OI
=>KI là tiếp tuyến của (O)