K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

Xét bài toán phụ . Cho ( O ) , I ở ngoài ( O ) Kẻ tiếp tuyến IA ( A là tiếp điểm ) , kẻ cát tuyến IDC ( ID < IE ). CMR tam giác IDA đồng dạng tam giác IAE

 Hạ OK vuông góc DE => DK = EK

Ta có : ID.IE =( IK-DK)(IK +EK)=\(IK^2-DK^2=OI^2-OK^2-DK^2=OI^2-OD^2=IA^2\)

=> \(\frac{ID}{IA}=\frac{IA}{IE}\)góc I chung => tam giác IDA đồng dạng IAE

Áp dụng giải bài toán này => AMC đồng dạng ACN => \(\frac{MC}{AC}=\frac{NC}{AN}=>MC.AN=AC.NC\)

Tam giác CMN vuông tại C => \(MH.MN=CM^2=>MH=\frac{CM^2}{MN}\)

=> \(MH.AN=\frac{CM^2}{MN}.AN=\frac{AC.CN.CM}{MN}\)

TT \(MA.NH=\frac{MC.AC.NC}{MN}\)

=> MH.NA=MA.NH ( đpcm )

 PS Được dùng kiến thức HK 2 sẽ không phải áp dụng bài toán phụ .

  Không tich hơi phí

8 tháng 12 2015

Kéo dài CD cắt AB tại F

Góc BCD = 90 độ => góc BCF = 90 độ  => Tam giác BCF vuông tại C  (1)

 AB = AC ( t/c 2 tiếp tuyến cắt nhau )  (2)

Từ (1) và (2) => AC=AB=AF=\(\frac{FB}{2}\)(*)

Ta lét vào tam giác DFB có CK // BF ( cùng vuông góc với BD ) => \(\frac{CI}{AF}=\frac{DI}{AD}=\frac{IK}{AB}\)(**)

Từ (1*) và (2*) => CI = CK ( đpcm )

 PS : câu d giống y đúc câu a bài hình đề thi HSG huyện thanh oai năm 2015-2016 

 

8 tháng 12 2015

ảnh đại diện của bạn ấn tượng đấy

16 tháng 12 2016

A C D B H K a) Ta có OB=OC (cùng là bán kính (O))

AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)

→O và A cách đều 2 đầu đoạn thẳng BC

→OA là đường trung trực của BC

→OA \(\perp\) BC

Xét Δ OBA vuông tại B có đường cao BH:

OB2= OH . OA (hệ thức lượng)

mà OB=R (OB là bán kính của (O))

→R2 =OH.OA

b)Xét ΔDBC nội tiếp (O) có đường kính BD

→ΔDBC vuộng tại C có cạnh huyền BD

→BC\(\perp\) CD mà OA\(\perp\)BC (cmt)

→OA song song CD

Ta có : AB song song CK (cùng \(\perp\) BD)

Xét ΔOBA vuông tại B

ΔDKC vuông tại K , có

\(\widehat{BOA}\) = \(\widehat{KDC}\) ( 2 góc đồng vị của OA song song CD)

→ΔOBA đồng dạng ΔDKC (g.n)

\(\frac{OB}{DK}\) =\(\frac{OA}{DC}\) =\(\frac{BA}{KC}\) (tỉ số đồng dạng)

→OA . CK=AB. CD

mà AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)

→AC . CD= CK . OA (đpcm)

15 tháng 9 2019

a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC

HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA

b, Ta có  K D C ^ = A O D ^ (cùng phụ với góc  O B C ^ )

=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO

c, Ta có:  M B A ^ = 90 0 - O B M ^ và  M B C ^ = 90 0 - O M B ^

Mà  O M B ^ = O B M ^ (∆OBM cân) =>  M B A ^ = M B C ^

=> MB là phân giác  A B C ^ . Mặt khác AM là phân giác B A C ^

Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC

d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A

=> CA = AB = AP => A là trung điểm CK

17 tháng 11 2021

a)a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

+ ABAB là tia phân giác của góc HADHAD  

Suy ra: ˆDAB=ˆBAHDAB^=BAH^

+ ACAC là tia phân giác của góc HAEHAE

Suy ra: ˆHAC=ˆCAEHAC^=CAE^

Ta có: ˆHAD+ˆHAE=2(ˆBAH+ˆHAC)HAD^+HAE^=2(BAH^+HAC^)=2.ˆBAC=2.90∘=180∘=2.BAC^=2.90∘=180∘

Vậy ba điểm D,A,ED,A,E thẳng hàng.

b)b) Gọi MM là trung điểm của BCBC

Theo tính chất của tiếp tuyến, ta có: AD⊥BD;AE⊥CEAD⊥BD;AE⊥CE

Suy ra: BD//CEBD//CE

Vậy tứ giác BDECBDEC là hình thang.

Vì MM là trung điểm của BCBC và AA là trung điểm của DEDE (vì DE là đường kính đường tròn (A))

Nên MAMA là đường trung bình của hình thang BDECBDEC

Suy ra: MA//BD⇒MA⊥DEMA//BD⇒MA⊥DE (vì BD⊥DEBD⊥DE)

Trong tam giác vuông ABCABC có AM là đường trung tuyến nên ta có: MA=MB=MC=BC2MA=MB=MC=BC2

Suy ra MM là tâm đường tròn đường kính BCBC với MAMA là bán kính

Vậy DEDE là tiếp tuyến của đường tròn tâm MM đường kính BC.