K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

bạn ơi nhầm đề bài rồi

1:

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó:ΔACB vuông tại C

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

Xét tứ giác FCDE có 

\(\widehat{FCD}+\widehat{FED}=180^0\)

Do đó: FCDE là tứ giác nội tiếp

2: Xét ΔCDA vuông tại C và ΔEDB vuông tại E có 

\(\widehat{CDA}=\widehat{EDB}\)

Do đó: ΔCDA\(\sim\)ΔEDB

Suy ra: DC/DE=DA/DB

hay \(DA\cdot DE=DB\cdot DC\)

11 tháng 2 2022

Do ^ACB = ^AEB = 900 ( góc nt chắn nửa đường tròn ) 

=> ^FCD = ^FED = 900 

Xét tứ giác FCDE có : 

^FCD + ^FCD = 1800 

mà 2 góc này đối 

Vậy tứ giác FCDE là tứ giác nt 1 đường tròn 

a: góc ACB=góc AEB=1/2*180=90  độ

=>CB vuông góc FA,AE vuông góc FB

góc FCD+góc FED=180 độ

=>FCDE nội tiếp

b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có

góc CDA=góc EDB

=>ΔDCA đồng dạng với ΔDEB

=>DC/DE=DA/DB

=>DA*DE=DB*DC

17 tháng 4 2023

a: góc ACB=góc AEB=1/2*180=90 độ

=>CB vuông góc FA,AE vuông góc FB

góc FCD+góc FED=180 độ

=>FCDE nội tiếp

b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có

góc CDA=góc EDB

=>ΔDCA đồng dạng với ΔDEB

=>DC/DE=DA/DB

=>DA*DE=DB*DC

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

Xét tứ giác FCDE có 

\(\widehat{FCD}+\widehat{FED}=180^0\)

Do đó: FCDE là tứ giác nội tiếp

b: Xét ΔACD vuông tại C và ΔBED vuông tại E có 

\(\widehat{CDA}=\widehat{EDB}\)

Do đó: ΔACD\(\sim\)ΔBED

Suy ra: DA/DB=DC/DE

hay \(DA\cdot DE=DB\cdot DC\)

a: góc ACB=1/2*sđ cung AB=90 độ

=>góc FCD=90 độ

góc AEB=1/2*sđ cung AB=90 độ

=>góc FED=90 độ

=>góc FCD+góc FED=180 độ

=>FCDE nội tiếp

b: Xét ΔCAD vuông tại C và ΔCBF vuông tại C có

góc CAD=góc CBF

=>ΔCAD đồng dạng với ΔCBF

=>CA/CB=CD/CF
=>CA*CF=CB*CD

 

a: góc ACB=1/2*sđ cung AB=90 độ

=>góc FCD=90 độ

góc AEB=1/2*sđ cung AB=90 độ

=>góc FED=90 độ

=>góc FCD+góc FED=180 độ

=>FCDE nội tiếp

b: Xét ΔCAD vuông tại C và ΔCBF vuông tại C có

góc CAD=góc CBF

=>ΔCAD đồng dạng với ΔCBF

=>CA/CB=CD/CF
=>CA*CF=CB*CD

28 tháng 2 2015

a/ Tam giác ABC nội tiếp đường tròn (O) có cạnh AB là đường kính  của đường tròn (O)

=> Tam giác ABC vuông tại C

=> Góc ACB=90 độ (1)

Mà: góc ACB+góc DCF=180 độ (kề bù ) (A,C,F thẳng hàng) (2)

Từ (1) và (2)=>góc DCF=90 độ (3)

Tam giác AEB nội tiếp đường tròn (O) có cạnh AB là đường kính của đường tròn (O)

=> Tam giác AEB vuông tại E

=> góc AEB=90 độ (4)

Mà: góc AEB+góc DEF =180 độ (kề bù) (B,E,F thẳng hàng) (5)

Từ(4) và (5)=>góc DEF=90 độ (6)

Từ (3) và (6)=> góc DCF+góc DEF=180 độ

=> Tứ giác FCDE nội tiếp (đpcm) 

 

28 tháng 2 2015

b/Xét hai tam giác: tam giác ADC và tam giác BED có:

 góc ADC= góc BED (đối đỉnh)

góc ACB= goc AEB (=90 độ theo c/m câu a)

hay góc ACD= góc BED ( C,D,B thẳng hàng và A,D,E thẳng hàng)

Do đó, tam giác ADC đồng dạng với tam giác BED (g.g)

=> DA/DB=DC/DE

<=> DA.DE=DB.DC (đpcm)