Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến của (O)
b:
Xét (O) có
ΔBDC nội tiếp
BD là đường kính
Do đó: ΔBDC vuông tại C
Xét ΔOBA vuông tại B và ΔDCB vuông tại C có
\(\widehat{BOA}=\widehat{CDB}\)
Do đó: ΔOBA∼ΔDCB
Suy ra: \(\dfrac{OB}{DC}=\dfrac{OA}{BD}\)
hay \(DC\cdot OA=2\cdot R^2\)
a: Xét (O) có
OH là một phần đường kính
AB là dây
OH⊥AB tại H
Do đó: H là trung điểm của AB
Xét ΔMAB có
MH là đường trung tuyến
MH là đường cao
Do đó:ΔMAB cân tại M
Xét ΔOAM và ΔOBM có
OA=OB
AM=BM
OM chung
Do đó:ΔOAM=ΔOBM
Suy ra: \(\widehat{OAM}=\widehat{OBM}=90^0\)
=>ΔOMB vuông tại B
=>MB là tiếp tuyến
b: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó:ΔABC vuông tại A
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA
=>AI*AO=2R^2
Xét ΔBDE vuông tại D có DC vuông góc BE
nên ΔBDE vuông tại D
=>BC*BE=BD^2=4R^2
=>BC*BE+AI*AO=6R^2