K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

\(MD\cdot ME=MA^2\left(\text{Δ}MAD\sim\text{Δ}MEA\right)\)

\(MH\cdot MO=MA^2\)

Do đó: \(MD\cdot ME=MH\cdot MO\)

26 tháng 12 2021

Tra google đấy bạn

26 tháng 12 2021

AM=MB và OA=OB nên OM là trung trực AB tại H

Lại có ADOE nội tiếp nên \(\widehat{AEM}=\widehat{AED}=\widehat{AOD}\left(\text{cùng chắn }\stackrel\frown{AD}\right)\)

\(\widehat{ADO}=90^0\left(\text{góc nt chắn nửa đg tròn}\right)\Rightarrow\widehat{AOD}+\widehat{OAD}=90^0\\ \text{Mà }\widehat{OAD}+\widehat{ADM}=90^0=\widehat{OAM}\\ \Rightarrow\widehat{AOD}=\widehat{ADM}\\ \Rightarrow\widehat{ADM}=\widehat{AEM}\\ \Rightarrow\Delta MAD\sim\Delta MEA\left(g.g\right)\\ \Rightarrow\dfrac{MA}{ME}=\dfrac{MD}{MA}\Rightarrow MA^2=MD\cdot ME\)

Mà theo HTL ta có \(MH\cdot MO=MA^2\)

Vậy ta có đpcm 

24 tháng 12 2021

a: Xét ΔMNB và ΔMCN có 

\(\widehat{CMN}\) chung

\(\widehat{MNB}=\widehat{MCN}\)

Do đó: ΔMNB\(\sim\)ΔMCN

Suy ra: \(MN^2=MB\cdot MC\)

26 tháng 12 2021

a: Xét ΔMNB và ΔMCN có 

\(\widehat{NMB}\) chung

\(\widehat{MNB}=\widehat{MCN}\)

Do đó: ΔMNB∼ΔMCN

Suy ra: \(\dfrac{MN}{MC}=\dfrac{MB}{MN}\)

hay \(MN^2=MB\cdot MC\)

cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CDA/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội...
Đọc tiếp

cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
A/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếp

B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân
câu này hơi dài , cảm ơn mấy bạn vì công đọc , sai thì thôi, đúng thì ok  , nhưng cảm ơn mn vì đọc cái bài dài này nhá :))

0

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA^2=MC*MD=MH*MO

=>MC/MO=MH/MD

=>ΔMCH đồng dạng với ΔMOD

=>góc MCH=góc MOD

=>góc HOD+góc HCD=180 độ

=>HODC nội tiếp