K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác SAOB có \(\widehat{SAO}+\widehat{SBO}=90^0+90^0=180^0\)

nên SAOB là tứ giác nội tiếp

b:

Xét ΔSAO vuông tại A có \(SA^2+AO^2=SO^2\)

=>\(SA^2=8^2-4^2=48\)

=>\(SA=4\sqrt{3}\left(cm\right)\)

Xét ΔSAO vuông tại A có \(sinASO=\dfrac{AO}{OS}=\dfrac{1}{2}\)

nên \(\widehat{ASO}=30^0\)

Xét (O) có

SA,SB là các tiếp tuyến

Do đó: SO là phân giác của góc ASB và SA=SB

=>\(\widehat{ASB}=2\cdot\widehat{ASO}=60^0\)

Xét ΔSAB có SA=SB và \(\widehat{ASB}=60^0\)

nên ΔSAB đều

=>\(AB=SA=4\sqrt{3}\left(cm\right)\)

1 . Cho M nằm ngoài (O;R). Tia MO cắt (O) lần lượt tại A và B. Gọi K là điểm nằm giữa O và B. Vẽ đường thẳng d AB tại K. Tiếp tuyến MC với (O) cắt d tại D (C là tiếp điểm), BC cắt d tại N.a) Chứng minh: CDKO nội tiếp.b) Chứng minh MC2 =MA. MB.c) Chứng minh: DCN cân.d) Gọi F là giao điểm của AD và (O), E là giao điểm của AC và d. Chứng minh: D, E, C, F cùng nằm trên một đường tròn. 2 . co đường...
Đọc tiếp

1 . Cho M nằm ngoài (O;R). Tia MO cắt (O) lần lượt tại A và B. Gọi K là điểm nằm giữa O và B. Vẽ đường thẳng d AB tại K. Tiếp tuyến MC với (O) cắt d tại D (C là tiếp điểm), BC cắt d tại N.

a) Chứng minh: CDKO nội tiếp.

b) Chứng minh MC2 =MA. MB.

c) Chứng minh: DCN cân.

d) Gọi F là giao điểm của AD và (O), E là giao điểm của AC và d. Chứng minh: D, E, C, F cùng nằm trên một đường tròn. 

2 . 

co đường tròn (O;R) và điểm S sao cho SO=2R . vẽ các tiếp tuyến SA, SB của đường tròn (O;R) (A,B là các tiếp điểm ) , và cát tuyến SMN ( không qua O) . gọi I là trung điểm của MN.

a/ chứng minh 5 điểm S,A,O,I,B cùng thuộc moottj đường tròn

b/ chứng minh SA2 = SM.SN

c/ tính SM và SN theo R khi MN= SA

d/ kẻ MH⊥OA , MH cát AN, AB tại D và E . chứng minh tứ giác IEMB nội tiếp đường tròn

e/ tính chu vi và diện tích hnhf phẳng giới hạn bởi SA, SB và cung AB

 

1
21 tháng 4 2020

Bài 1 : 

M A C D E F N K O B

a.Ta có MC là tiếp tuyến của (O)

\(\Rightarrow MC\perp OC\)

Mà \(MK\perp KD\Rightarrow\widehat{MCO}=\widehat{MKD}=90^0\Rightarrow OCDK\) nội tiếp 

b.Vì MC là tiếp tuyến của (O) 

\(\Rightarrow\widehat{MCA}=\widehat{MBC}\Rightarrow\Delta MCA~\Delta MBC\left(g.g\right)\)

\(\Rightarrow\frac{MC}{MB}=\frac{MA}{MC}\Rightarrow MC^2=MA.MB\)

c . Vì MO∩(O)=AB \(\Rightarrow AB\) là đường kính của (O)

\(\Rightarrow AC\perp BC\Rightarrow\widehat{BCD}+\widehat{MCA}=90^0\Rightarrow\widehat{BCD}=90^0-\widehat{MCA}\)

Mà \(\widehat{MCA}=\widehat{MBC}\Rightarrow\widehat{MCD}=90^0-\widehat{ABN}=\widehat{BNK}=\widehat{CND}\)

\(\Rightarrow\Delta DCN\) cân 

d ) Ta có : \(\widehat{BFD}=90^0=\widehat{BKD}\) vì AB là đường kính của (O)

\(\Rightarrow BKFD\) nội tiếp 

\(\Rightarrow\widehat{FDK}=\widehat{KBF}=\widehat{ABC}+\widehat{CBF}=\widehat{MCA}+\widehat{FCD}=\widehat{DCE}\)

\(+\widehat{FCD}=\widehat{FCE}\)

Vì MC là tiếp tuyến của (O)

\(\Rightarrow CEDF\) nội tiếp 

7 tháng 5 2018

1) Ta có \(\widehat{ABO}=\widehat{ACO}=90độ\left(gt\right)\)

Do đó\(\widehat{ABO}+\widehat{ACO}=180độ\)

Nên tứ giác ABOC nội tiếp đường tròn đường kính AO

Tâm đường tròn ngoại tiếp tứ giác ABOC là trung điểm AO.

2) Xét ΔABD và ΔAEB có

\(\widehat{BAE}\)chung

\(\widehat{ABD}=\widehat{AEB}\)(góc tạo bởi tia tiếp tuyến và dây và góc nội tiếp cùng chắn \(\widebat{BD}\))

Nên ΔABD {\displaystyle \backsim } ΔAEB

Do đó \(\frac{AB}{AE}\)=\(\frac{AD}{AB}\)

Hay AB2= AE.AD

24 tháng 4 2019

a) Ta có: \(\widehat{OBA}+\widehat{OCA}=90^o\)

=> OBAC nội tiếp

b) Xét tam giác AEB và tam giác ABD

    Có: \(\widehat{BAD}\)chung

          \(\widehat{ADB}=\widehat{ABE}=\frac{1}{2}sđ\widebat{BE}\)

=> Tam giác AEB đồng dạng tam giác ABD (g.g)

=> \(\frac{AE}{AB}=\frac{AB}{AD}\)=>AB2=AE.AD (đpcm)

c) Kẽ BE cắt AC tại S

          CE cắt AB tại P

    Ta có:\(\hept{\begin{cases}\widehat{BEP}=\widehat{CES}=\frac{1}{2}sđ\widebat{BC}\\\widehat{AEP}=\widehat{CED}=\frac{1}{2}sđ\widebat{CD}\end{cases}}\)(1)

Mặt khác: \(\hept{\begin{cases}\widehat{BDC}=\widehat{BCA}=\frac{1}{2}sđ\widebat{BC}\\\widehat{DBC}=\widehat{BCA}\left(slt\right)\end{cases}}\)

=> \(\widehat{BDC}=\widehat{DBC}\)

=> Tam giác BDC cân tại C

=> CD=BC 

=> \(\widebat{CD}=\widebat{BC}\)(2)

Từ (1),(2) => \(\widehat{BEP}=\widehat{AEP}\)

=> Tia đổi của tia EC là tia phân giác của góc BEA

20 tháng 5 2017

a,  S A O ^ + S B O ^ = 90 0 + 90 0 = 180 0

Tứ giác OASB nội tiếp

b,  M A C ^ = C B A ^ = 1 2 s đ C A ⏜

=> ∆MAC:∆MBA(g.g)

Từ đó suy ra  M A 2 = M B . M C

c, Có  M A 2 = M B . M C  mà MA = MS =>  S M M S = M C M S

Chứng minh được ∆MSB:∆MCS
 =>  M B S ^ = C S M ^ hay 
M B S ^ = C S A ^

d, Chứng minh  N A S ^ = M B S ^ (Vì cùng =  C S A ^ )

=> Tứ giác NAOB là từ giác nội tiếp

Chứng minh được  A N O ^ = O N B ^

=> ĐPCM