Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề không nói rõ là đoạn thẳng OC cắt đường tròn hay đường thẳng OC. Vì nếu là đường thăng thì sẽ có hai điểm D. Ta coi D là giao điểm của đoạn thẳng OC với đường tròn, nếu D là giao của tia đối của tia OC với đường tròn thì chỉ việc cộng thêm 2R.
Tam giác OAB có \(OA=OB=AB=R\to\Delta OAB\) đều. Suy ra \(\angle OBA=60^{\circ}.\) Do \(BC=BA=OB=R\to\Delta BCO\) cân ở B. Vậy theo tính chất góc ngoài tam giác \(\angle OBA=\angle BOC+\angle BCO=2\angle BCO\to\angle BCO=\frac{60^{\circ}}{2}=30^{\circ}.\) Vậy góc ACD bằng 30 độ.
Kẻ OH vuông góc với AB. Vì tam giác OAB đều nên \(OH=\frac{\sqrt{3}}{2}AB=\frac{\sqrt{3}}{2}R=\frac{3\sqrt{3}}{2}.\) Tam giác OHC vuông ở H có góc đỉnh C bằng 30 độ nên \(OH=\frac{1}{2}OC\to OC=2\times\frac{3\sqrt{3}}{2}=3\sqrt{3}.\) Mà \(OD=R=3\to CD=OC-OD=3\sqrt{3}-3.\)
O A B D m C
a) \(\widehat{BDA}=90^o\)(góc nội tiếp chắn nửa đường tròn)
=>\(\widehat{BDM}=90^o;\widehat{MCB}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{BDM}+\widehat{MCB}=90^o+90^o=180^o\)
=> tứ giác BCMD nội tiếp (tứ giác có 2 góc đối bằng 180o)
b) \(\sin\widehat{BAD}=\frac{BD}{AB}=\frac{R}{2R}=\frac{1}{2}=\sin30^o\Rightarrow\widehat{BAD}=30^o\)
\(AD=AB.\cos\widehat{BAD}=2R.\cos30^o=2R\cdot\frac{\sqrt{3}}{2}=R\sqrt{3}\)
Xét \(\Delta\)CMA có: \(\widehat{C}=90^o\), AC=AB+CB=3R có AC=MAcosA
=> \(MA=\frac{AC}{\cos30^o}=\frac{3R}{\frac{\sqrt{3}}{2}}=2\sqrt{3}R\)
=> MD=MA-AD=\(2\sqrt{3}R-\sqrt{3}R=\sqrt{3}R\)
=> AD=MD=\(R\sqrt{3}\)=> D là trung điểm MA
=> \(\Delta\)MBA cân tại B (vì BD vừa là đường cao vừa là đường trung tuyến)
c) MA.AD=\(\left(2\sqrt{3}R\right)\cdot R\sqrt{3}=6R^2\)
Chào người đẹp
a) Dễ quá
b)Quá dễ
c) ko khó
DF = DL => DB là đường trung trực của FL
=> BD vuông góc và chia FL ra 2 đoạn bằng nhau
hay OB vừa đg cao vừa đường trung tuyến
=> tam giác FOL cân
=>OF= OL
=>BLC=90độ
chắn nữa đường tròn
d) dễ quá khỏi làm
d)Gọi Q là giao điểm của (O) và SC
Vì EF song song với BQ (do RSQ=BQC=90)
=>EQ=BF;BF=BL=>EQ=BF=BL
=>góc EBQ=BQL(cùng nhìn 2 cung bằng nhau)
Mà EQ=BL
=>tứ giác BEQL là hình thang cân
=>BQ=EL
mà tứ giác SQBR là hình chữ nhật =>RS=BQ
EL=DE+DL
=>...........
hsg có mấy chỗ tự hiểu
a. Ta có : \(\hat{BDM}=90^o\) (kề bù với \(\hat{BDA}\) nội tiếp chắn nửa đường tròn).
\(\hat{BCM}=90^o\left(gt\right)\)
Vậy : BCMD nội tiếp được một đường tròn (\(\hat{BDM}+\hat{BCM}=180^o\)) (đpcm).
b. Xét △ADB và △ACM :
\(\hat{ADB}=\hat{ACM}=90^o\)
\(\hat{A}\) chung
\(\Rightarrow\Delta ADB\sim\Delta ACM\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AM}\Leftrightarrow AD.AM=AB.AC\) (đpcm).
c. Ta có : \(OD=OB=BD=R\) ⇒ △ODB đều.
\(\Rightarrow S_{\Delta ODB}=\dfrac{\sqrt{3}}{4}R^2\)
\(\hat{BOD}\) là góc ở tâm chắn cung BD \(\Rightarrow sđ\stackrel\frown{BC}=\hat{BOD}=60^o\) (do △ODB đều).
\(S_{ODB}=\dfrac{\text{π}R^2n}{360}=\dfrac{\text{π}R^2.60}{360}=\dfrac{\text{π}R^2}{6}\)
\(\Rightarrow S_{vp}=S_{ODB}-S_{\Delta ODB}=\dfrac{\text{π}R^2}{6}-\dfrac{\sqrt{3}}{4}R^2\)
\(=\dfrac{\text{π}}{6}R^2-\dfrac{\sqrt{3}}{4}R^2\)
\(=\dfrac{2\text{π}-3\sqrt{3}}{12}R^2\)
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64\)
=>AC=8(cm)
c: Sửa đề: Chứng minh CB=CD
Xét ΔCBD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
=>CB=CD