Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔOCD cân tại O
mà OH là đường cao
nên OH là phân giác của góc COD
Xét ΔOCM và ΔODM có
OC=OD
góc COM=góc DOM
OM chung
Do đo: ΔOCM=ΔODM
=>góc ODM=90 độ
=>DM là tiếptuyến của (O)
b: Xét ΔMCF và ΔMEC có
góc MCF=góc MEC
góc CMF chung
Do đó: ΔMCF đồng dạng với ΔMEC
=>MC/ME=MF/MC
=>MC^2=ME*MF=MH*MO
a)
Theo tính chất 2 tiếp tuyến cắt nhau (MAMA, MCMC) thì MA=MCMA=MC
Mà OA=OC=ROA=OC=R
⇒MO⇒MO là đường trung trực của ACAC
⇒MO⊥AC⇒MEAˆ=900(1)⇒MO⊥AC⇒MEA^=900(1)
Lại có:
ADBˆ=900ADB^=900 (góc nt chắn nửa đường tròn)
⇒MDAˆ=1800−ADBˆ=900(2)⇒MDA^=1800−ADB^=900(2)
Từ (1);(2) ⇒MEAˆ=MDAˆ⇒MEA^=MDA^. Mà 2 góc này cùng nhìn cạnh MAMA nên tứ giác AMDEAMDE là tgnt.
cảm ơn bn
nhưng mik còn câu c thôi
mà bn chép mạng cx chọn cái chép đi chứ, chép thừa r
3: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2
Xét ΔMAB và ΔMCA có
góc MAB=góc MCA
góc AMB chung
=>ΔMAB đồng dạng với ΔMCA
=>MA/MC=MB/MA
=>MA^2=MB*MC
=>MH*MO=MB*MC
=>MH/MB=MC/MO
=>MH/MC=MB/MO
=>ΔMHB đồng dạng với ΔMCO
=>góc MHB=góc MCO
=>góc OHB+góc OCB=180 độ
=>OHBC nội tiếp
=>góc BHC=góc BOC
=>góc BHC=2*góc BDC(ĐPCM)