K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2021

a,  ta có BM , CN là các đường cao \(=>\angle\left(BMC\right)=\angle\left(CNB\right)=90^o\)(1)

mà N,M là 2 đỉnh liên tiếp của tứ giác BNMC

\(=>\) tứ giác BMNC nội tiếp đường tròn 

=>4 điểm B,M,N,C cùng thuộc 1 đường tròn

b, có AD là đường kính (O) =>tam giác ACD nội tiếp (O)

\(=>\angle\left(ACD\right)=90^o\)(2)

từ(1)(2) \(=>BM//CD=>BH//CD\left(3\right)\)

tương tự =>tam giác ABD nội tiếp (O)\(=>\angle\left(ABD\right)=90^o\left(4\right)\)

từ(1)(4) \(=>BD//CN< =>CH//BD\left(5\right)\)

từ(3)(5)=>BHCD là hình bình hành

 

1: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

2: góc EDB=góc ECB

góc ABK=1/2*180=90 độ

=>BK vuông góc AB

=>BK//CE

góc CBK=1/2*sđ cung CK=góc ECB

=>góc EDB=góc CBK

25 tháng 5 2018

Giờ mình ko rảnh và máy tính đanhg hư nên ko làm đc thông cảm nhá

25 tháng 5 2018

HD

image006

Câu 1.

Tự CM.

Câu 2:

Kẻ AO cắt đường tròn tại F

Để ý góc ADE=góc EBC=góc AFC

Mà góc CAF+góc FAC =90°

⇒góc ADE+góc FAC =90°hay AF ⊥ DE.

Vậy đường thẳng kẻ qua A vuông góc DE luôn đi qua điểm cố định O.

Câu 3:

Gọi giao CQ và BP là O’

Dễ thấy góc ABP=góc QCE (cùng bằng 1/2 góc ABD = 1/2 góc ACE)

⇒ góc ABP+góc QCE=90° hay BP ⊥ CQ tại O’

⇒ các ΔBQN,  ΔCMP có đường phân giác đồng thời là đường cao nên cân tại B và C

⇒ O’M=O’P; O’N=O’Q; lại có QN ⊥ MP, nên tứ giác MNPQ là hình thoi