K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

a, Tứ giác BDQH nội tiếp vì  B D H ^ + B Q H ^ = 180 0

b, Vì tứ giác ACHQ nội tiếp =>  C A H ^ = C Q H ^

Vì tứ giác ACDF nội tiếp  =>  C A D ^ = C F D ^

Từ đó có  C Q H ^ = C F D ^  mà 2 góc ở vị trí đồng vị => DF//HQ

c, Ta có  H Q D ^ = H B D ^  (câu a)

H B D ^ = C A D ^ = 1 2 s đ C D ⏜

C A D ^ = C Q H ^  (ACHQ cũng nội tiếp)

=>  H Q D ^ = H Q C ^ => QH là phân giác  C Q D ^

Mặt khác chứng minh được CH là phân giác góc  Q C D ^

Trong tam giác QCD có H là giao của ba đường phân giác nên H là tâm đường tròn nội tiếp => H cách đều 3 cạnh CD, CQ, DQ

d, Vì CMFN là hình chữ nhật nên MN và CF cắt nhau tại trung điểm của mỗi đường.

Trong tam giác FCD có MN//CD và MN đi qua trung điểm CF nên MN đi qua trung điểm DF

Mặt khác AB đi qua trung điểm của DF nên 3 đường thẳng MN, AB, DF đồng quy

20 tháng 2 2022

bạn giải thích lại giúp mình câu b được không ạ? tại mình không hiểu câu đó lắm, mình cảm ơn!

26 tháng 1 2022

giải ý d như nào ạ

 

26 tháng 1 2022
Anser reply image Anser reply image Anser reply image Anser reply image 
25 tháng 2 2020

Giúp mình với ạ <3 

26 tháng 2 2020

d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D

co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)

ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)

suy ra \(\Delta CED\) deu => EC=CD (1)

mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)

=> tam giac CDF can tai C

suy ra CD=CF (2)

tu (1),(2) suy ra dpcm