Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . dễ c/m được tam giác AOF đồng dạng với ADB(gg)
b. Dễ c/m được tứ giác BHKD nt do DKB=DHB=90 cùng nhìn cạnh BD
nên DHK=KBD(cùng nhìn cạnh DK)
mà DCB=DBK(cùng phụ với KBC)
từ đó ta được DHK=DCO hay tứ giác KHOC nt
c, theo mk câu c sai đề vì nếu cần c.m \(\frac{BD}{DM}-\frac{DM}{AM}=1\Leftrightarrow DB\cdot AM=DM^2+DM\cdot AM=DM\left(AM+DM\right)=DM\cdot AD\)
(đến đây vẫn đúng nha bạn)
ta thấy AMC đồng dạng với ADB hay \(\frac{AM}{AD}=\frac{MC}{DB}\Rightarrow AM\cdot BD=CM\cdot AD\)\(\Rightarrow CM\cdot AD=DM\cdot AD\Leftrightarrow CM=DM\)(vô lý )
nên mk cho là đề sai nếu mk có sai bạn chỉ mk vs ạ
a) Chứng minh tứ giác OBDF nội tiếp.
Định tâm I đường tròn ngoại tiếp tứ OBDF.
Ta có: DBO = 900 và DFO = 900(tính chất tiếp tuyến)
Tứ giác OBDF có DBO+DFO =1800 nên nội tiếp được trong một đường tròn.
Tâm I đường tròn ngoại tiếp tứ giác OBDF là trung điểm của OD
b) Tính Cos DAB .
Áp dụng định lí Pi-ta-go cho tam giác OFA vuông ở F ta được:
\(OA=\sqrt{OF^2+AF^2}=\sqrt{R^2+\left(\frac{4R}{3}\right)}=\frac{5R}{3}\)
\(COS\)\(FAO=\frac{AF}{OA}=\frac{4R}{3}:\frac{5R}{3}=0,8=>COSDAB=0,8\)
c) Kẻ OM ⊥ BC ( M ∈ AD) . Chứng minh \(\frac{BD}{DM}-\frac{DM}{AM}\) =1
∗ OM // BD ( cùng vuông góc BC) ⇒ MOD BDO = (so le trong) và BDO ODM = (tính chất hai tiếp tuyến cắt nhau)
Suy ra: MDO =MOD.
Vậy tam giác MDO cân ở M. Do đó: MD = MO
∗ Áp dụng hệ quả định lí Ta let vào tam giác ABD có OM // BD ta được:
\(\frac{BD}{OM}=\frac{AD}{AM}HAY\frac{BD}{DM}=\frac{AD}{AM}\)(VÌ MD=MO)
\(=>\frac{BD}{DM}=\frac{AM+DM}{AM}=1+\frac{DM}{AM}\)
Do đó:\(\frac{DM}{BM}-\frac{DM}{AM}=1\left(đpcm\right)\)
d) Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O) theo R.
∗Áp dụng hệ thức lượng cho tam giác OAM vuông ở O có OF ⊥ AM ta được:
OF2 = MF. AF hay R2 = MF. \(\frac{4r}{3}\)⇒ MF = \(\frac{3r}{4}\)
∗ Áp dụng định lí pi ta go cho tam giác MFO vuông tại F ta được:
OM = \(\sqrt{OF^2+MF^2}=\sqrt{R^2+\frac{3R}{4}^2}=\frac{5R}{4}\)
∗ OM //BD =>\(\frac{OM}{BD}=\frac{AO}{AB}=>BD=\frac{OM.AB}{OA}=\frac{5R}{4}.\left(\frac{5R}{3}+R\right):\frac{5R}{3}=2R\)
Gọi S là diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O)
S1 là diện tích hình thang OBDM.
S2 là diện tích hình quạt góc ở tâm BON = 90 0
Ta có: S = S1 – S2 .
\(S1=\frac{1}{2}\left(OM+BD\right).OB=\frac{1}{2}\left(\frac{5R}{4}+2R\right).R=\frac{13R^2}{8}\left(đvdt\right)\)
\(S2=\frac{\pi R^2.90^0}{360^0}=\frac{\pi R^2}{4}\left(đvdt\right)\)
Vậys=s1-s2=\(\frac{13r^2}{8}-\frac{\pi r^2}{4}=\frac{r^2}{8}\left(13-2\pi\right)\left(đvdt\right)\)
a ) Vì DB ,DF là tiếp tuyến của (O)
\(\Rightarrow\widehat{AFO}=\widehat{ABD}=90^0\Rightarrow\Delta AFO\sim\Delta ABD\left(g.g\right)\)
\(\Rightarrow\frac{AF}{AB}=\frac{AO}{AD}\Rightarrow AO.AB=AF.AD\)
b ) Ta có : DB là tiếp tuyến của (O)
\(\Rightarrow BK\perp DC\Rightarrow DB^2=DK.DC\)
Mà DF , DB là tiếp tuyến của (O) \(\Rightarrow BH\perp DO\Rightarrow DB^2=DH.DO\)
\(\Rightarrow DK.DC=DH.DO\Rightarrow\frac{DK}{DO}=\frac{DH}{DC}\)
\(\Rightarrow\Delta DKH\sim\Delta DOC\left(c.g.c\right)\) \(\Rightarrow\widehat{DHK}=\widehat{DCO}\)
\(\Rightarrow KHOC\) nội tiếp
nếu tiếp tuyến AF với F là tiếp điểm thì giải đc bạn nhé
a, sửa đề DBOF
Vì DB và DF lần lượt là tiếp tuyến với F;B là tiếp điểm
=> ^OFD = ^OBD = 900
Xét tứ giác DBOF có
^OFD + ^OBD = 1800
mà 2 góc này đối
Vậy tứ giác DBOF là tứ giác nt 1 đường tròn
Ta có ^BKC = 900 ( góc nt chắc nửa đường tròn )
=> ^DKB = 900
Lại có DB = DF ( tc tiếp tuyến cắt nhau )
OB = OF
Vậy DO là trung trực đoạn BF
=> OD vuông BF tại H
Xét tứ giác BHKD có
^DKB = ^BHD = 900
mà 2 góc này kề, cùng nhìn cạnh BD
Vậy tứ giác BHKD là tứ giác nt 1 đường tròn
b, Xét tứ giác ABD và tam giác AFO
^A _ chung
^ABD = AFO = 900
Vậy tam giác ABD ~ tam giác AFO ( g.g)
\(\dfrac{AB}{AF}=\dfrac{AD}{AO}\Rightarrow AB.AO=AD.AF\)