Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O r H K
Từ O kẻ OH và OK vuông góc với BD . Nối OC , cắt AD tại K => OC vuông góc với AD (cung AC và CD bằng nhau)
Dễ thấy OHDK là hình chữ nhật => \(OK=DH=\frac{1}{2}BD=3\left(cm\right)\)
và \(DK=OH=\sqrt{OB^2-3^2}=\sqrt{r^2-9}\) (1)
Mặt khác, ta lại có \(KD=\sqrt{CD^2-KC^2}=\sqrt{20-\left(r-3\right)^2}\) (2)
Từ (1) và (2) ta có : \(\sqrt{r^2-9}=\sqrt{20-\left(r-3\right)^2}\Leftrightarrow\orbr{\begin{cases}r=5\left(n\right)\\r=-2\left(l\right)\end{cases}}\)
Vậy bán kính của dường tròn là 5 cm.
O A B D C
Ta có
\(CB^2=CD^2+DB^2-2.CD.DB.\cos\left(\widehat{CDB}\right)\)
\(=20+36-2.2\sqrt{5}.6.\cos\left(\pi-\widehat{CAB}\right)\)
\(=56+\frac{24\sqrt{5}.2\sqrt{5}}{2R}=56+\frac{120}{R}\left(1\right)\)
Ta lại có
\(CB^2+AC^2=AD^2+DB^2=4R^2\)
\(\Leftrightarrow56+\frac{120}{R}+20=4R^2\)
\(\Leftrightarrow4R^2-\frac{120}{R}-76=0\)
\(\Leftrightarrow R^3-19R-30=0\)
\(\Leftrightarrow\left(R-5\right)\left(R+2\right)\left(R+3\right)=0\)
\(\Leftrightarrow R=5\)
https://olm.vn/hoi-dap/detail/66015664055.html bạn vào đây tham khảo nha
*Chứng minh thuận:
Nối DE
xét ∆ ABC và ∆ AED ta có:
AB = AE (gt)
AD = BC (gt)
Điểm C chuyển động trên nửa đường tròn đường kính AB thì điểm D luôn nhìn đoạn AE cố định dưới một góc bằng 90 ° nên điểm D nằm trên nửa đường tròn đường kính AE nằm trong nửa mặt phẳng bờ AE chứa nửa đường tròn đường kính AB
Chứng minh đảo:
Trên nửa đường tròn đường kính AE lấy điểm D’ bất kì ,đường thẳng AD’ cắt nửa đường tròn đường kính AB tại C’.Nối ED’ ,BC’
Xét ∆ AD’E và ∆ BC’A ta có:
AB = AE (gt)
Suy ra: ∆ AD’E = ∆ BC’A ⇒ AD’ = BC’
Vậy khi điểm C chạy trên nửa đường tròn đường kính AB thì quỹ tích điểm D là nửa đường tròn đường kính AE
Gọi O và O’ lần lượt là tâm hai đường tròn đường kính AB và AE ,M là giao điểm thứ hai của hai đường tròn
Vì AB = AE nên ta có : OA = OM = O’A = O’M
góc (BAE) = 90 °
Suy ra tứ giác AOMO’ là hình vuông
Diện tích phần chung của hai nửa đường tròn bằng diện tích hai quạt tròn có chung AmM trừ đi diện tích hình vuông
Hình tự vẽ
a) BF ; AE tiếp tuyến
=> \(\widehat{BFE}=\widehat{EFB}=90^{\text{o}}\)
Ta có \(\widehat{BFE}+\widehat{EFB}=180^{\text{o}}\)
=> FB//AE
b) Xét tam giác vuông ACE ; ACH
AC2 = AE2 + CE2 = AH2 + HC2
=> AE = AH (CE = HC)
Tương tự ta có FB = HB
lại có \(\widehat{ACB}=90^{\text{o}}\left(\text{thuộc (I) ; đường kính AB}\right)\)
Xét tam giác vuông ABC vuông tại C ; đường cao AH có
AH.AB = CH2 = AE.FB
c) Ta có \(\widehat{ECF}=\widehat{ECA}+\widehat{ACB}+\widehat{FCB}=2\widehat{ACB}=180^o\)
(Vì \(\widehat{ECA}=\widehat{ACH};\widehat{HCB}=\widehat{FCB}\))
=> E;C;F thẳng hàng
mà EC = CF
=> C trung điểm EF
mà I trung điểm AB
=> CI đường trung bình hình thang EABF
=> EA//CI//FB
=> \(\widehat{ECI}=90^{\text{o}}\)
=> EF tiếp tuyến (I)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho