K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

13 tháng 12 2016

A B C D O r H K

Từ O  kẻ OH và OK vuông góc với BD  . Nối OC , cắt AD tại K => OC vuông góc với AD (cung AC và CD bằng nhau)

Dễ thấy OHDK là hình chữ nhật => \(OK=DH=\frac{1}{2}BD=3\left(cm\right)\)

và \(DK=OH=\sqrt{OB^2-3^2}=\sqrt{r^2-9}\) (1)

Mặt khác, ta lại có \(KD=\sqrt{CD^2-KC^2}=\sqrt{20-\left(r-3\right)^2}\) (2)

Từ (1) và (2) ta có : \(\sqrt{r^2-9}=\sqrt{20-\left(r-3\right)^2}\Leftrightarrow\orbr{\begin{cases}r=5\left(n\right)\\r=-2\left(l\right)\end{cases}}\)

Vậy bán kính của dường tròn là 5 cm.

13 tháng 12 2016

O A B D C

Ta có

\(CB^2=CD^2+DB^2-2.CD.DB.\cos\left(\widehat{CDB}\right)\)

\(=20+36-2.2\sqrt{5}.6.\cos\left(\pi-\widehat{CAB}\right)\)

\(=56+\frac{24\sqrt{5}.2\sqrt{5}}{2R}=56+\frac{120}{R}\left(1\right)\)

Ta lại có

\(CB^2+AC^2=AD^2+DB^2=4R^2\)

\(\Leftrightarrow56+\frac{120}{R}+20=4R^2\)

\(\Leftrightarrow4R^2-\frac{120}{R}-76=0\)

\(\Leftrightarrow R^3-19R-30=0\)

\(\Leftrightarrow\left(R-5\right)\left(R+2\right)\left(R+3\right)=0\)

\(\Leftrightarrow R=5\)

14 tháng 12 2016

khong duoc dat ten la ab ma phai la du ma

12 tháng 9 2019

https://olm.vn/hoi-dap/detail/66015664055.html bạn vào đây tham khảo nha

19 tháng 5 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

*Chứng minh thuận:

Nối DE

xét ∆ ABC và  ∆ AED ta có:

AB = AE (gt)

AD = BC (gt)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Điểm C chuyển động trên nửa đường tròn đường kính AB thì điểm D luôn nhìn đoạn AE cố định dưới một góc bằng 90 ° nên điểm D nằm trên nửa đường tròn đường kính AE nằm trong nửa mặt phẳng bờ AE chứa nửa đường tròn đường kính AB

Chứng minh đảo:

Trên nửa đường tròn đường kính AE lấy điểm D’ bất kì ,đường thẳng AD’ cắt nửa đường tròn đường kính AB tại C’.Nối ED’ ,BC’

Xét  ∆ AD’E và ∆ BC’A ta có:

AB = AE (gt)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra:  ∆ AD’E =  ∆ BC’A ⇒ AD’ = BC’

Vậy khi điểm C chạy trên nửa đường tròn đường kính AB thì quỹ tích điểm D là nửa đường tròn đường kính AE

Gọi O và O’ lần lượt là tâm hai đường tròn đường kính AB và AE ,M là giao điểm thứ hai của hai đường tròn

Vì AB = AE nên ta có : OA = OM = O’A = O’M

góc (BAE) = 90 °

Suy ra tứ giác AOMO’ là hình vuông

Diện tích phần chung của hai nửa đường tròn bằng diện tích hai quạt tròn có chung AmM trừ đi diện tích hình vuông

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

28 tháng 12 2021

Hình tự vẽ

a) BF ; AE tiếp tuyến 

=> \(\widehat{BFE}=\widehat{EFB}=90^{\text{o}}\)

Ta có \(\widehat{BFE}+\widehat{EFB}=180^{\text{o}}\)

=> FB//AE 

b) Xét tam giác vuông ACE ; ACH 

AC2 = AE2 + CE2 = AH2 + HC2 

=> AE = AH (CE = HC)

Tương tự ta có FB = HB

lại có \(\widehat{ACB}=90^{\text{o}}\left(\text{thuộc (I) ; đường kính AB}\right)\)

Xét tam giác vuông ABC vuông tại C ; đường cao AH có

AH.AB = CH2 = AE.FB 

28 tháng 12 2021

c) Ta có \(\widehat{ECF}=\widehat{ECA}+\widehat{ACB}+\widehat{FCB}=2\widehat{ACB}=180^o\)

(Vì \(\widehat{ECA}=\widehat{ACH};\widehat{HCB}=\widehat{FCB}\))

=> E;C;F thẳng hàng 

mà EC = CF 

=> C trung điểm EF

mà I trung điểm AB

=> CI đường trung bình hình thang EABF

=> EA//CI//FB

=> \(\widehat{ECI}=90^{\text{o}}\)

=> EF tiếp tuyến (I)