Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C là giao điểm 2 tiếp tuyến tại A và M \(\Rightarrow OC\) là trung trực AM
\(\Rightarrow E\) là trung điểm AM
Tương tự ta có OD là trung trực BM \(\Rightarrow F\) là trung điểm BM
\(\Rightarrow EF\) là đường trung bình tam giác ABM
\(\Rightarrow EF||AB\Rightarrow ONEF\) là hình thang (1)
Lại có O là trung điểm AB \(\Rightarrow OF\) là đường trung bình tam giác ABM
\(\Rightarrow OF=\dfrac{1}{2}AM=AE\)
Mà \(OF||AE\) (cùng vuông góc BM)
\(\Rightarrow AEFO\) là hình bình hành \(\Rightarrow\widehat{OFE}=\widehat{OAE}\)
Mà \(EN=AE=\dfrac{1}{2}AM\Rightarrow\Delta AEN\) cân tại E \(\Rightarrow\widehat{OAE}=\widehat{ANE}\)
\(\widehat{ANE}+\widehat{ONE}=180^0\Rightarrow\widehat{OFE}+\widehat{ONE}=180^0\)
Lại có \(\widehat{ONE}+\widehat{NEF}=180^0\) (2 góc trong cùng phía)
\(\Rightarrow\widehat{OFE}=\widehat{NEF}\)
\(\Rightarrow ONEF\) là hình thang cân
a, xét tg AEO và CEO có : EO chung
^AEO = ^CEO = 90
OA = OC = r
=> Tg AEO = tg CEO (ch-cgv)
=> ^AOE = ^COE
xét tg MAO và tg MCO có : Mo chung
OA = OC = r
=> tg MAO = tg MCO (cg-c)
=> ^MAO = ^MCO
mà ^MAO = 90
=> ^MCO = 90 => OC _|_ MC
có C thuộc 1/2(o)
=> MC là tt của 1/2(o)
b, xét tứ giác MCOA có : ^MCO = ^MAO = 90
=> ^MCO + ^MAO = 180
=>MCOA nội tiếp
+ có D thuộc 1/(o) dk AB (gt) => ^ADB = 90 = ADM
có MEA = 90 do AC _|_ MO (Gt)
=> ^ADM = ^MEA = 90
=> MDEA nt
a: Xét tứ giác OBDM có
góc OBD+góc OMD=180 độ
=>OBDM là tư giác nội tiếp
c: Xét ΔKOB và ΔKFE có
góc KOB=góc KFE
góc OKB=góc FKE
=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE
=>KO*KE=KB*KF
a: Xét (O) có
CM là tiếp tuyến có M là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: OC là tia phân giác của \(\widehat{AOM}\)
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm
DB là tiếp tuyến có B là tiếp điểm
Do đó: OD là tia phân giác của \(\widehat{BOM}\)
Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
hay \(\widehat{COD}=90^0\)
a: Xét (O) có
CM là tiếp tuyến có M là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: CM=CA
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm
DB là tiếp tuyến có B là tiếp điểm
Do đó: DM=DB
Ta có: MC+MD=CD
mà MC=CA
và MD=DB
nên CD=AC+BD
a) Xét (O) có
CM là tiếp tuyến có M là tiếp điểm(gt)
CA là tiếp tuyến có A là tiếp điểm(gt)
Do đó: OC là tia phân giác của \(\widehat{AOM}\)(Tính chất hai tiếp tuyến cắt nhau)
nên \(\widehat{AOM}=2\cdot\widehat{COM}\)
Xét (O) có
DB là tiếp tuyến có B là tiếp điểm(gt)
DM là tiếp tuyến có M là tiếp điểm(gt)
Do đó: OD là tia phân giác của \(\widehat{MOB}\)(Tính chất hai tiếp tuyến cắt nhau)
nên \(\widehat{BOM}=2\cdot\widehat{DOM}\)
Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)(hai góc kề bù)
mà \(\widehat{AOM}=2\cdot\widehat{COM}\)(cmt)
và \(\widehat{BOM}=2\cdot\widehat{DOM}\)(cmt)
nên \(2\cdot\widehat{DOM}+2\cdot\widehat{COM}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{DOM}+\widehat{COM}\right)=180^0\)
\(\Leftrightarrow\widehat{DOM}+\widehat{COM}=90^0\)
mà \(\widehat{DOM}+\widehat{COM}=\widehat{COD}\)(tia OM nằm giữa hai tia OC, OD)
nên \(\widehat{COD}=90^0\)
Vậy: \(\widehat{COD}=90^0\)
b) Gọi E là trung điểm của CD
Xét ΔCOD có \(\widehat{COD}=90^0\)(cmt)
nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)
Xét ΔCOD cân tại O(cmt) có OE là đường trung tuyến ứng với cạnh huyền CD(E là trung điểm của CD)
nên \(OE=\dfrac{CD}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(CE=ED=\dfrac{CD}{2}\)(E là trung điểm của CD)
nên EO=EC=ED
⇒O∈(E)
Ta có: AC⊥AB(AC là tiếp tuyến có A là tiếp điểm của (O))
BD⊥BA(BD là tiếp tuyến có B là tiếp điểm của (O))
Do đó: AC//BD(Định lí 1 từ vuông góc tới song song)
Xét tứ giác ACDB có AC//DB(cmt)
nên ACDB là hình thang có hai đáy là AC và DB(Định nghĩa hình thang)
Xét (O) có AB là đường kính(gt)
nên O là trung điểm của AB
Xét hình thang ACDB(AC//DB) có
E là trung điểm của CD(gt)
O là trung điểm của AB(cmt)
Do đó: OE là đường trung bình của hình thang ACDB(Định nghĩa đường trung bình của hình thang)
⇒OE//AC//DB và \(OE=\dfrac{AC+DB}{2}\)(Định lí 4 về đường trung bình của hình thang)
Ta có: OE//AC(cmt)
AC⊥AB(AC là tiếp tuyến có A là tiếp điểm của (O))
Do đó: OE⊥AB(Định lí 2 từ vuông góc tới song song)
mà O∈AB(O là trung điểm của AB)
nên OB⊥OE tại O
Xét (E) có
O∈(E)(cmt)
OB⊥OE tại O(cmt)
Do đó: OB là tiếp tuyến của (E)(Dấu hiệu nhận biết tiếp tuyến của đường tròn)
⇔AB là tiếp tuyến của (E)
hay đường tròn đường kính CD tiếp xúc với AB(Đpcm)
GT : Nửa đường tròn tâm O đường kính AB , C thuộc nữa đường tròn , D nằm trên đoạn OA, tiếp tuyến Ax,By của nửa đường tròn . Qua C , đường thẳng vuông góc CD cắt tiếp tuyến Ax,By ở M và N ; AC cắt DM = {P} ; BC cắt DN = {Q}
KL : a) ADCM và BDCN nội tiếp đường tròn
b) Góc MDN = 90 độ
C . PQ//AB
Mik giải luôn nhé để nếu bạn cần thì có thể tham khảo luôn :
(Dưới đây là bài làm tham khảo , bạn có thể tham khảo nhé !)
Nguồn bài tham khảo nếu bạn muốn xem thêm cách làm khác :https://hoc24.vn/cau-hoi/cho-nua-duong-tron-tam-o-duong-kinh-ab-lay-diem-c-thuoc-nua-duong-tron-va-diem-d-tren-doan-oa-ve-cac-tiep-tuyen-axby-cua-nua-duong-tron-duong-than.222294491220