Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời hộ mình cái xin. mình đã 2 năm ko on r giờ mới on lại :(((.Xin mọi người trả lời giúp mình :(((
△AMB nội tiếp đường tròn đường kính AB nên △AMB vuông tại M.
- Ta có: \(\widehat{CAB}+\widehat{DBA}=90^0+90^0=180^0\)
\(\Rightarrow\widehat{CAM}+\widehat{MAB}+\widehat{DBM}+\widehat{MBA}=180^0\)
\(\Rightarrow\left(\widehat{CAM}+\widehat{DBM}\right)+\left(\widehat{MAB}+\widehat{MBA}\right)=180^0\)
\(\Rightarrow\left(\widehat{CAM}+\widehat{DBM}\right)+90^0=180^0\) nên \(\widehat{CAM}+\widehat{DBM}=90^0\)
Tứ giác ANMC có: \(\widehat{NAC}+\widehat{NMC}=90^0+90^0=180^0\)
Nên tứ giác ANMC nội tiếp \(\Rightarrow\widehat{CAM}=\widehat{CNM}\)
Tứ giác BNMD có: \(\widehat{NBD}+\widehat{NMD}=90^0+90^0=180^0\)
\(\Rightarrow\)Tứ giác BNMD nội tiếp \(\Rightarrow\widehat{MBD}=\widehat{MND}\)
\(\Rightarrow\widehat{CNM}+\widehat{MND}=\widehat{CAM}+\widehat{MBD}=90^0\)
\(\Rightarrow\widehat{INK}=90^0\).
Tứ giác MINK có: \(\widehat{IMK}+\widehat{INK}=90^0+90^0=180^0\)
\(\Rightarrow\)Tứ giác MINK nội tiếp nên \(\widehat{MIK}=\widehat{MNK}\)
Lại có \(\widehat{MNK}=\widehat{MBD}\left(cmt\right)\) \(\Rightarrow\widehat{MIK}=\widehat{MBD}\)
Xét (O): \(\widehat{MBD}=\widehat{MAB}\left(=\dfrac{1}{2}sđ\stackrel\frown{MB}\right)\)
\(\Rightarrow\widehat{MIK}=\widehat{MAB}\) nên IK//AB
ΔKBO=ΔKCO
=>KB=KC
=>KO là trung trực của BC
ΔKCO đồng dạng với ΔCIO
=>OC/OI=OK/OC
=>OC^2=OI*OK
=>OI*OK=ON^2
=>OI/ON=ON/OK
=>ΔOIN đồng dạng với ΔONK
=>gócc ONI=góc OKN
Tương tự, ta có: OI/OM=OM/OK
=>ΔMKO đồng dạng với ΔIMO
=>góc MKO=góc IMO=góc INO
=>góc MKD=góc NKD
=>K,M,N thẳng hàng
=>K luôn thuộc MN
trên CD lấy điểm N, kẻ MN vuông góc với CD
=> 2 tam giac vuông MBC=MNC
=> 2tam giác MAD=MND
=> MB=MN=MA = R
vậy CD là tiếp tuyến đường tròn tâm M
a: Xét tứ giác IAOC có
\(\widehat{IAO}+\widehat{ICO}=90^0+90^0=180^0\)
=>IAOC là tứ giác nội tiếp
=>I,A,O,C cùng thuộc một đường tròn
b: Xét (O) có
IA,IC là tiếp tuyến
Do đó: IA=IC
=>I nằm trên đường trung trực của AC(1)
ta có: OA=OC
=>O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OI là đường trung trực của AC
=>OI\(\perp\)AC
c: Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
Ta có: OI là đường trung trực của AC
=>OI vuông góc với AC tại trung điểm của AC
mà OI cắt AC tại D
nên OI\(\perp\)AC tại D và D là trung điểm của AC
Xét tứ giác CDOE có
\(\widehat{CDO}=\widehat{CEO}=\widehat{ECD}=90^0\)
=>CDOE là hình chữ nhật
=>CO=DE=R
d: Xét ΔIAC có IA=IC
nên ΔIAC cân tại I
=>\(\widehat{IAC}=\widehat{ICA}\)
Ta có: ΔACB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)MB tại C
=>ΔACM vuông tại C
Ta có: \(\widehat{IAC}+\widehat{IMC}=90^0\)(ΔACM vuông tại C)
\(\widehat{ICA}+\widehat{ICM}=\widehat{ACM}=90^0\)
mà \(\widehat{IAC}=\widehat{ICA}\)
nên \(\widehat{IMC}=\widehat{ICM}\)
=>IM=IC
mà IC=IA
nên IM=IA
=>I là trung điểm của MA
=>\(MA=2\cdot IC\)
Xét ΔABM vuông tại A có AC là đường cao
nên \(MC\cdot MB=MA^2\)
=>\(MC\cdot MB=\left(2\cdot IC\right)^2=4\cdot IC^2\)
=>\(IC^2=\dfrac{1}{4}\cdot MC\cdot MB\)