Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có ÐCMA = 450 góc nt chắn ¼ đg tròn
=> ∆CMH vuông cân tại H
=> CH=HM
Mà OC=OM
=> OH là trung trực của CM
∆CMH vuông cân tại H => OH là trung trực cũng là phân giác
=> ÐNHM = 450
=> ∆NMH vuông cân tại M
=> CHMN là hình vuông
b) Vì OH là trung trực của CM => CI=IM
=> ÐICM = ÐIMC
Mà Ð CIM = ÐCBD (góc nt cùng chắn cung CD)
=> ÐICM = ÐCBD
=> MC//BD
c) Nếu H thuộc DB =>CHBM là hình bình hành AM đi qua trung điểm của CB=> M là giao điểm của trung tuyến xuất phát từ A của tam giác ACB với cung BC
d) Vì CHMN là hình vuông => ÐHNM = 450 => ÐONB = 450
=> N thuộc cung chứa góc 450 dựng trên đoạn OB
Gọi C là điểm chính giữa cung AB của nửa đường tròn tâm O đường kính AB, M là điểm bất kì trên cung BC. Kẻ CH vuông góc với AM tại H, I là giao của OH và BC, MI cắt nửa đường tròn tâm O tại D
a. CMR: CM // DB
b. Xác định vị trí của M để D,H,B thẳng hàng
c. E là giao của AD và MB. CM: EC//DM
a) Ta có: \(\widehat{CHA}=90^0\)(CH⊥AM)
nên H nằm trên đường tròn đường kính CA(Định lí)(1)
Ta có: \(\widehat{COA}=90^0\)(CO⊥AB)
nên O nằm trên đường tròn đường tròn CA(Định lí)(2)
Từ (1) và (2) ta suy ra: H và O nằm trên đường tròn đường kính CA
hay CHOA là tứ giác nội tiếp(đpcm)