Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ sau:
Vì \(C,D\in\left(O;\dfrac{AB}{2}\right)\) nên \(\widehat{C_1}\) và \(\widehat{D_1}\) là các góc nội tiếp chắn nửa đường tròn(chắn \(\stackrel\frown{AB}\))
\(\Rightarrow\widehat{D_1}=\widehat{C_1}=90^o\) trong khi C ∈ AE và D ∈ EB
⇒Xét ▲ABE có: BC⊥AE tại C; AD⊥BE tại D}cmtrên
BC χ AD tại H
⇔H là trực tâm của ▲ABE
➤EH⊥AB
1. Vì \(C,D\) nằm trên đường tròn đường kính \(AB\to BD\perp FA,AC\perp BF\to H\) là trực tâm tam giác \(ABF\to FH\perp AB.\)
2. Do tam giác \(ABF\) có \(BD\) vừa là đường cao, vừa là đường phân giác, suy ra \(\Delta ABF\) cân ở \(B.\) Suy ra \(D\) là trung điểm \(FA.\) Vì \(FH\parallel AE\to\frac{DH}{DE}=\frac{DF}{DA}=1\to AEFH\) là hình bình hành. Do hình bình hành này có hai đường chéo vuông góc với nhau nên \(AEFH\) là hình thoi.
3. Vì \(\angle ABC=60^{\circ}\to\Delta ABF\) là tam giác đều, suy ra \(AF=AB=2R\). Mặt khác, \(BD=AB\cdot\cos30^{\circ}=2R\cdot\frac{\sqrt{3}}{2}=R\sqrt{3}.\) Mà \(H\) là trực tâm tam giác đều \(ABF\to HD=\frac{1}{3}BD=\frac{R\sqrt{3}}{3}\to EH=\frac{2R\sqrt{3}}{3}.\)
Vậy diện tích tứ giác \(AEFH\) bằng \(\frac{1}{2}\cdot EH\cdot AF=\frac{1}{2}\cdot\frac{2R\sqrt{3}}{3}\cdot2R=\frac{2R^2\sqrt{3}}{3}.\)
a: Xét (O) có
CM,CA là các tiếp tuyến
nen CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM.DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
CD=CM+MD
=>CD=AC+BD
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
b: AC*BD=CM*MD=OM^2=R^2
ai lm đc mk tặng 10 k nha