K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

Cho a,b,c > 0 chứng minh rằng:

1 a+b+\(\dfrac{1}{4}\)\(\sqrt{a+b}\)

2. (a+b+\(\dfrac{1}{4}\))^2+(b+c+\(\dfrac{1}{4}\))^2+(c+a+\(\dfrac{1}{4}\))^2 ≥ (\(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\)+\(\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}\)+\(\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\))

26 tháng 11 2017

Giúp mk với!!

Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.b) Gọi O là trung điểm của AB, O' là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO' ⊥...
Đọc tiếp

Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.

a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.

b) Gọi O là trung điểm của AB, O' là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO' ⊥ (SBC).

c) Chứng minh rằng khi S thay đổi trên d thì JK luôn luôn đi qua một điểm cố định.

d) Tìm một điểm cách đều các điểm A, B, C, D, I, J, K và tìm khoảng cách đó.

e) Gọi M là giao điểm của JK và (ABCD). Chứng minh rằng AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC.

f) Khi S thay đổi trên d, các điểm I, J, K lần lượt chạy trên đường nào.

1
27 tháng 3 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nhận xét

Hình thang ABCD có hai cạnh bên và đáy nhỏ bằng nhau và bằng nửa đáy lớn, nên nó là nửa lục giác đều nội tiếp trong đường tròn đường kính AB, tâm O là trung điểm của AB.

Như vậy: ∠(ACB) = ∠(ADB) = 1v.

a) Theo giả thiết, ta có: SA ⊥ (ABCD) ⇒ SA ⊥ BC

BC ⊥ SA & BC ⊥ AC ⇒ BC ⊥ (SAC) ⇒ BC ⊥ SC. (1)

Mặt khác SB ⊥ (P) nên SB ⊥ IJ (⊂ (P)) (2)

Từ (1) và (2) suy ra BCJI là tứ giác nội tiếp trong đường tròn đường kính BJ.

Ta có BC ⊥ (SAC) ⇒ BC ⊥ AJ (⊂ (SAC))

AJ ⊥ BC & AJ ⊥ SB (do SB ⊥ (P)) ⇒ AJ ⊥ (SBC) ⇒ AJ ⊥ JI (⊂ (SBC)) (3)

Lý luận tương tự, ta có:

BD ⊥ AD & BD ⊥ SA ⇒ BD ⊥ (SAD) ⇒ BD ⊥ AK (⊂ (SAD))

AK ⊥ BD & AK ⊥ SB(⊂ (P)) ⇒ AK ⊥ (SBD) ⇒ AK ⊥ KI. (4)

Từ (3) và (4) suy ra AKJI nội tiếp trong đường tròn đường kính AI nằm trong mặt phẳng (P).

b) Ta có ngay O’ là trung điểm BJ

Vì OO’ là đường trung bình của ΔABJ nên OO’ // AJ

Mà AJ ⊥ (SBC) nên OO’ ⊥ (SBC)

c) Ta có (SCD) ∩ (ABCD) = CD.

Gọi M = JK ∩ CD

SA ⊥ (ABCD) ⇒ SA ⊥ AM(⊂ (ABCD)) (5)

SB ⊥ (P) ⇒ SB ⊥ AM (⊂ (P)) (6)

Từ (5) và (6), ta có: AM ⊥ (SAB) ⇒ AM ⊥ AB.

Suy ra AM là tiếp tuyến của đường tròn ngoại tiếp ΔABC tại A. Như vậy AM cố định. Vì M = AM ∩ CD nên M cố định.

d) ΔAIB vuông tại I nên OA = OB = OI

ΔAJB vuông tại J (do AJ ⊥ (SBC)) nên OA = OB = OJ).

ΔAKB vuông tại K (do AK ⊥ (SBD)) nên OA = OB = OK).

Ta có OA = OB = OC = OD = OI = OJ = OK nên O là điểm cách đều các điểm đã cho và OA = AB/2 = a.

e) Theo chứng minh câu c.

f) Khi S thay đổi trên d, ta có I luôn nằm trong mặt phẳng (B, d).

Trong mặt phẳng này I luôn nhìn đoạn AB cố định dưới góc vuông nên tập hợp I là đường tròn ( C 1 ) đường kính AB nằm trong mặt phẳng (B, d).

Tương tự, tập hợp J là đường tròn ( C 2 ) đường kính AC nằm trong mặt phẳng (C, d) và tập hợp K là đường tròn đường kính AD nằm trong mặt phẳng (D, d).

22 tháng 9 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo giả thiết ta có M và N là hai điểm di động lần lượt trên hai tia Ax và By sao cho AM + BN = MN.

a) Kéo dài MA một đoạn AP = BN, ta có MP = MN và OP = ON.

Do đó ΔOMP = ΔOMN (c.c.c)

⇒ OA = OH nên OH = a.

Ta suy ra HM = AM và HN = BN.

b) Gọi M’ là hình chiếu vuông góc của điểm M trên mặt phẳng (Bx’, By) ta có:

HK // MM’ với K ∈ NM’.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó đối với tam giác BNM’ đường thẳng BK là phân giác của góc (x'By) .

c) Gọi (β) là mặt phẳng (AB, BK). Vì HK // AB nên HK nằm trong mặt phẳng (β) và do đó H thuộc mặt phẳng (β). Trong mặt phẳng (β) ta có OH = a. Vậy điểm H luôn luôn nằm trên đường tròn cố định, đường kính AB và nằm trong mặt phẳng cố định (β) = (AB, BK)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

Dễ thấy P là điểm chính giữa \widebatEF\widebatEF nên D,N,P thẳng hàng

Cần chứng minh ˆIMC=ˆPDCIMC^=PDC^

Ta có : ˆIMC=ˆMIB+ˆB1=12ˆBIC+ˆB1=12(180oˆB1ˆC1)+ˆB1IMC^=MIB^+B1^=12BIC^+B1^=12(180o−B1^−C1^)+B1^

=12(180oˆABC2ˆACB2)+ˆABC2=90o+ˆABC4ˆACB4=12(180o−ABC^2−ACB^2)+ABC^2=90o+ABC^4−ACB^4

ˆPDC=ˆPDE+ˆEDC=12ˆEDF+ˆEDCPDC^=PDE^+EDC^=12EDF^+EDC^=12(180oˆFDBˆEDC)+ˆEDC=12(180o−FDB^−EDC^)+EDC^

=90oˆFDB2+ˆEDC2=90o90oˆB12+90oˆC12=90o−FDB^2+EDC^2=90o−90o−B1^2+90o−C1^2

=90o+ˆABC4ˆACB4=90o+ABC^4−ACB^4

ˆIMC=ˆPDCIM//ND⇒IMC^=PDC^⇒IM//ND

b) Theo câu a suy ra ˆMID=ˆIDPMID^=IDP^

Mà ΔPIDΔPIDcân tại I ( do IP = ID ) nên ˆIPD=ˆIDPIPD^=IDP^

Suy ra ˆMID=ˆIPD=ˆQPNMID^=IPD^=QPN^

ΔIDMΔPQN(g.g)⇒ΔIDM≈ΔPQN(g.g)

c) từ câu b IMPN=IDPQ=IPPQ⇒IMPN=IDPQ=IPPQ( 1 ) 

Theo hệ thức lượng, ta có : IQ.IA=IE2=IP2IQ.IA=IE2=IP2

Do đó : QPIP=1IQIP=1IPIA=PAIAQPIP=1−IQIP=1−IPIA=PAIA

Suy ra  IPQP=IAPAIPQP=IAPA( 2 )

Từ ( 1 ) và ( 2 ) IMPN=IAPA⇒IMPN=IAPAkết hợp với IM // PN suy ra A,M,N thẳng hàng

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCDa) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)Câu 2:Cho hình chóp S.ABCD có đáy...
Đọc tiếp

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)

b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)

d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)

Câu 2:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

Câu 3:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)

b) Tìm giao điểm của mặt phẳng (PMN) và BC

Câu 4:

Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

a) Tìm giao tuyến của hai mặt phẳng  (IBC) và  (KAD)

b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)

Câu 5:

Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)

b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy

3
23 tháng 6 2016

Câu 1:

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ



 

23 tháng 6 2016

Câu 2:

a) Trong  (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE)

b) Chứng minh M ∈ (SDC), trong  (SDC) : MC' ∩ SD = F. Chứng minh thiết diện là AEC'F



Câu 3:

a) Chứng minh E, N là hai điểm chung của mặt phẳng (PMN) và (BCD)

b) EN ∩ BC = Q. Chứng minh Q là điểm cần tìm

Câu 4:

a) Chứng minh I, K là hai điểm chung của (BIC) và (AKD)

b) Gọi P = CI ∩ DN và Q = BI ∩ DM, chứng minh PQ là giao tuyến cần tìm

 


Câu 5:

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

Gọi (C) là đường tròn tâm O bán kính r, \(\left(C_1\right)\) là đường tròn tâm O bán kính R. Giả sử đường thẳng đã dựng được. Khi đó có thể xem D là ảnh của B qua phép đối xứng qua tâm A. Gọi (C') là ảnh của (C) qua phép đối xứng qua tâm A, thì D thuộc giao của (C') và \(\left(C_1\right)\).

Số nghiệm của bài toán phụ thuộc vào số giao điểm của (C') và \(\left(C_1\right)\).

12 tháng 1 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) CC′ // BB′ ⇒ ΔICC′ ∼ ΔIBB′

Giải sách bài tập Toán 11 | Giải sbt Toán 11

CC′ // AA′ ⇒ ΔJCC′ ∼ ΔJAA′

Giải sách bài tập Toán 11 | Giải sbt Toán 11

AA′ // BB′ ⇒ ΔKAA′ ∼ ΔKBB′

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi H và H’ lần lượt là trung điểm của các cạnh BC và B’C’. Vì HH’ là đường trung bình của hình thang BB’CC’ nên HH′ // BB′.

Mà BB′ // AA′ suy ra HH′ // AA′

Ta có: G ∈ AH và G′ ∈ A′H′ và ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) AH′ ∩ GG′ = M ⇒ GG′ = G′M + MG

Ta có: G′M // AA′ ⇒ ΔH′G′M ∼ ΔH′A′A

Giải sách bài tập Toán 11 | Giải sbt Toán 11

MG // HH′ ⇒ ΔAMG ∼ ΔAH′H

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác HH’ là đường trung bình của hình thang BB’CC’ nên

Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Cho tam giác ABC nhọn không cân nội tiếp đường tròn (O). Đường tròn (J) bàng tiếp góc A tiếp xúc với các đường thẳng BC, CA, AB lần lượt tại D, E, F. Gọi M là trung điểm của BC. Đường tròn đường kính MJ cắt DE tại điểm K khác D. Gọi D là giao điểm thứ hai của đường thẳng AD và (J) .    a) Chứng minh rằng bốn điểm B, D, K, D' cùng nằm trên một đường tròn.    b) Gọi G là giao...
Đọc tiếp

 Cho tam giác ABC nhọn không cân nội tiếp đường tròn (O). Đường tròn (J) bàng tiếp góc A tiếp xúc với các đường thẳng BC, CA, AB lần lượt tại D, E, F. Gọi M là trung điểm của BC. Đường tròn đường kính MJ cắt DE tại điểm K khác D. Gọi D là giao điểm thứ hai của đường thẳng AD và (J) .  
 a) Chứng minh rằng bốn điểm B, D, K, D' cùng nằm trên một đường tròn.  
 b) Gọi G là giao của BC và EF, đường thẳng GJ cắt AB, AC lần lượt tại L và N. Lấy các điểm P, Q lần lượt trên các đường thẳng JB, JC sao cho \(\widehat{PAB}=\widehat{QAC}=90^o\). Các đường thẳng LP và NQ cắt nhau tại T. Gọi S là điểm chính giữa cung BAC của (O) và T là giao của AT với (O). Chứng minh rằng đường thẳng ST' đi qua tâm đường tròn nội tiếp tam giác ABC.

0