K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
20 tháng 9 2018
a) Theo tính chất của hai tiếp tuyến cắt nhau ta có:
OC là tia phân giác của ∠AOM
OD và tia phân giác của ∠BOM
OC và OD là các tia phân giác của hai góc kề bù ∠AOM và ∠BOM nên OC ⊥ OD.
=> ∠COD = 90o (đpcm)
b) Theo tính chất của hai tiếp tuyến cắt nhau ta có:
CM = AC, DM = BC
Do đó: CD = CM + DM = AC + BD (đpcm)
c) Ta có: AC = CM, BD = DM nên AC.BD = CM.MD
ΔCOD vuông tại O, ta có:
CM.MD = OM2 = R2 (R là bán kính đường tròn O).
Vậy AC.BD = R2 (không đổi).
CM
1 tháng 11 2017
Ta có: AC = CM, BD = DM nên AC.BD = CM.MD
ΔCOD vuông tại O, ta có:
CM.MD = OM2 = R2 (R là bán kính đường tròn O).
Vậy AC.BD = R2 (không đổi).
a: Xét (O) có
DC,DA là tiếp tuyến
=>DC=DA và OD là phân giác của góc AOC(1)
Xét (O) có
EC,EB là tiếp tuyến
=>EC=EB và OE là phân giác của góc BOC(2)
Từ (1), (2) suy ra:
góc DOE=1/2(góc COA+góc COB)
=1/2*180=90 độ
b: DC+CE=DE
DC=DA
EB=EC
Do đó: DA+EB=DE
c: Xét ΔDOE vuông tại O có OC là đường cao
nên CD*CE=CO^2
=>CD*CE=R^2 không đổi
d: Sửa đề; Đường kính DE
Gọi K là trung điểm của DE
ΔDOE vuông tại O
=>O nằm trên đường tròn đường kính DE
=>O nằm trên (K)
Xét hình thang ADEB có
K,O lần lượt là trung điểm của DE,AB
=>KO là đường trung bình
=>KO//AD//EB
=>KO vuông góc AB
Xét (K) có
KO là bán kính
AB vuông góc KO tại O
Do đó: AB là tiếp tuyến của (K)