K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2021

b) Dễ thấy C là trực tâm của tam giác IAB nên C, I, H thẳng hàng.

Do tứ giác AICK là hình thang nội tiếp được đường tròn nên là hình thang cân.

Khi đó \(\widehat{IAK}=\widehat{CKA}\Rightarrow\widehat{IAB}=\widehat{NBA}\)

Suy ra tam giác NAB vuông cân tại N nên \(\widehat{NBA}=45^o\).

Ta có các tứ giác CMIN, AMIH nội tiếp được nên \(\widehat{NMH}=\widehat{NMI}+\widehat{HMI}=\widehat{ICN}+\widehat{IAB}=45^o+45^o=90^o\Rightarrow MN\perp MH\).

 

26 tháng 5 2021

undefined

c) Đề phải là \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}\ge6\).

Đặt \(x=\dfrac{IH}{CH};y=\dfrac{IN}{AN};z=\dfrac{IM}{BM}\left(x,y,z< 1\right)\).

Ta có \(x+y+z=\dfrac{S_{IAB}}{S_{ABC}}+\dfrac{S_{IBC}}{S_{ABC}}+\dfrac{S_{ICA}}{S_{ABC}}=1\).

Lại có \(\dfrac{IH}{CH}=x\Rightarrow\dfrac{CH}{IH}=\dfrac{1}{x}\Rightarrow\dfrac{IC}{IH}=\dfrac{1}{x}-1\).

Tương tự \(\dfrac{IA}{IN}=\dfrac{1}{y}-1;\dfrac{IB}{IM}=\dfrac{1}{z}-1\).

Do đó \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-3\ge_{Svacxo}\dfrac{9}{x+y+z}-3=\dfrac{9}{1}-3=6\).

Vậy ta có đpcm.

a: Xét tứ giác KAOM có 

\(\widehat{KAO}+\widehat{KMO}=180^0\)

Do đó: KAOM là tứ giác nội tiếp

b: Xét (O) có

KA là tiếp tuyến

KM là tiếp tuyến

Do đó: KA=KM

hay K nằm trên đường trung trực của AM(1)

Ta có: OA=OM

nên O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra OK là đường trung trực của AM

hay OK\(\perp\)AM

Xét ΔOAK vuông tại A có AI là đường cao

nên \(OI\cdot OK=OA^2\)