Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Lấy C thuộc tia đối MA sao cho MC = MB => chi vi ABC = MA + MB + AB = MA + MC + 2R = AC + 2R.
=> Chu vi tam giác ABC lớn nhất <=> AC lớn nhất.
Xét tam giác MBC có góc BMC = 90độ và MC = MB(cách kẻ)
=> tam giác MBC vuông cân tại M => góc MCB = 45 độ
=> C thuộc cung chưa góc 45 độ dựng trên AB (1)
Lấy M' là điểm chính giữa nửa đường tròn đường kính AB (M' cùng phía với M).
Lấy D thuộc tia đối M'A sao cho M'D = M'A = M'B => AD = 2R
=> Ta cũng chứng minh được: D thuộc cung chứa góc 45độ dựng trên AB (2)
Từ (1) và (2) => C;D;A và B cùng thuộc 1 đường tròn.
Ta sẽ chứng minh được góc ABD = 90độ
=> AD là đường kính => AC ≤ AD (trong đường tròn đường kính là dây lớn nhất).
=> AC + 2R ≤ AD + 2R
=> AC + 2R ≤ 2R + 2R
=> AC + 2R ≤ 4R
=> Chu vi ABC ≤ 4R
Đạt được giá trị này <=> AC ≡ AD => M ≡ M'
=> M là điểm chính giữa nữa đường tròn đường kính AB
A B H K O M x y N
a/ Ta có : \(\hept{\begin{cases}AH\text{//}OM\text{//}BK\\OA=OB\end{cases}}\) \(\Rightarrow\)OM là đường trung bình của hình thang ABKH
\(\Rightarrow\)\(AH+BK=2OM=2R\) (không đổi)
b/ Từ M hạ MN vuông góc với AB tại N (1)
Ta sẽ chứng minh MN = MK
Xét trong (O;R) thì : \(\widehat{BMK}=\widehat{MAB}\) (cùng chắn cung MB)
Mà : \(\hept{\begin{cases}\widehat{BMK}+\widehat{MBK}=90^o\\\widehat{MAB}+\widehat{MBA}=90^o\end{cases}}\) \(\Rightarrow\)\(\widehat{MBA}=\widehat{MBK}\)
Xét hai tam giác vuông NBM và KBM có MB là cạnh huyền (chung) , \(\widehat{MBA}=\widehat{MBK}\)
\(\Rightarrow\)\(\Delta NBM=\Delta KBM\) (ch.gn)
\(\Rightarrow\) MN = MK (2)
Từ (1) và (2) suy ra đpcm.
c/ Vì ABKH là hình thang vuông nên \(S_{ABKH}=\frac{1}{2}\left(AH+BK\right).HK=\frac{1}{2}.2OM.HK\)
\(=\left(2MN\right).OM\) . Mà OM = R không đổi, vậy \(maxS_{ABKH}\Leftrightarrow maxMN\Leftrightarrow MN=OM\)\(\Leftrightarrow\)M là điểm chính giữa cung AB
Khi đó thì : \(S_{ABKH}=2OM.OM=2R^2\)
A B D C M
1. Ta có AD // OM // BC ; OA = OB
=> OM là đường trung bình của hình thang ABCD => M là trung điểm CD => MC = MD
2. Vì OM là đường trung bình của hình thang ABCD nên : \(OM=\frac{AD+BC}{2}\Rightarrow AD+BC=2OM\)không đổi.
3. Dễ thấy M là tâm của đường tròn đường kính CD vì MC = MD
Lại có AD vuông góc với MD => đpcm
4. Ta có : \(S_{ABCD}=\frac{1}{2}.\left(AD+BC\right).CD=OM.CD\)
Vì OM không đổi nên S.ABCD lớn nhất <=> CD lớn nhất <=> CD = AB
Vậy max (S.ABCD) = OM . AB = R.(2R) = 2R2 với R = AB/2