K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

1. Xét nửa đường tròn (O) , có:


AC, CD là 2 tiếp tuyến của nửa đường tròn (O) (tiếp điểm A, D) (gt)


=> CA = CD , \(\widehat{CAO}=\widehat{CDO}=90^o\)

Xét tứ giác CAOD, có:


\(\widehat{CAO}+\widehat{CDO}=90^o+90^o=180^o\)

\(\widehat{CAO}\)và \(\widehat{CDO}\)là 2 góc đối nhau


=> ACDO là tứ giác nội tiếp 


 

14 tháng 5 2021

Xét \(\Delta CDM\)và \(\Delta CBD\), có:


\(\widehat{MCD}chung\)


\(\widehat{CDM}=\widehat{CBD}\)(góc nội tiếp và góc tạo bời tia tiếp tuyến và dây cung cùng chắn \(\widebat{MD}\)

\(\Rightarrow\Delta~\Delta\left(gg\right)\)

\(\Rightarrow\frac{CD}{CB}=\frac{CM}{CD}\Leftrightarrow CD^2=CM.CB\)

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0
15 tháng 5 2021

85axfHu.png

4) Ta có: \(AM//PQ\)( cùng vuông góc với OC )

Xét tam giác COQ có: \(EM//OQ\)

\(\Rightarrow\frac{CE}{CO}=\frac{EM}{OQ}\)( hệ quả của định lý Ta-let )  (1) 

Xét tam giác COP có: \(AE//OP\)

\(\Rightarrow\frac{CE}{CO}=\frac{AE}{OP}\)( hệ quả của định lý Ta-let ) (2) 

Từ (1) và (2) \(\Rightarrow\frac{EM}{OQ}=\frac{AE}{OP}\)Mà AE=EM

\(\Rightarrow OQ=OP\)

Xét tam giác CPQ và tam giác COP có chung đường cao hạ từ  C, đáy \(OP=\frac{PQ}{2}\)

\(\Rightarrow S_{\Delta CPQ}=2.S_{\Delta COP}\)

Ta có: \(S_{\Delta COP}=\frac{1}{2}OA.CP=\frac{1}{2}R.CP\)

Áp dụng hệ thức lượng trong tam giác COP vuông tại O có đường cao OA ta có:

\(OA^2=CA.AP\)

Mà \(CA.AP\le\frac{\left(CA+AP\right)^2}{4}=\frac{PC^2}{4}\)( BĐT cô-si )

Dấu "=" xảy ra \(\Leftrightarrow AC=AP\)

\(\Rightarrow PC^2\ge4OA^2\)

\(\Rightarrow PC\ge2OA=2R\)

\(\Rightarrow S_{\Delta COP}\ge R^2\)

\(\Rightarrow S_{\Delta CPQ}\ge2R^2\)

Dấu "=" xảy ra \(\Leftrightarrow AC=AP\) 

Mà tam giác COP vuông tại O có đường cao OA

\(\Rightarrow AC=AP=OA=R\)

Khi đó áp dụng định lý Py-ta-go vào tam giác CAO vuông tại A ta được:

\(AC^2+AO^2=OC^2\)

\(\Rightarrow OC=\sqrt{AC^2+AO^2}=R\sqrt{2}\)

Vậy điểm C thuộc đường thẳng d sao cho \(OC=R\sqrt{2}\)thì diện tích tam giác CPQ nhỏ nhất 

15 tháng 5 2021

giải hộ mik câu 4 nhé thanks

20 tháng 11 2021

a, Vì CA = CM ( tc tiếp tuyến cắt nhau ) 

OA = OM = R 

=> OC là đường trung trực đoạn AM 

=> OC vuông AM 

^AMB = 900 ( góc nội tiếp chắn nửa đường tròn ) 

=> AM vuông MB (1)

Ta có : DM = DB ( tc tiếp tuyến cắt nhau ) 

OM = OB = R 

=> OD là đường trung trực đoạn MB 

=> OD vuông MB (2) 

Từ (1) ; (2) => OD // AM 

b, OD giao MB = {T}

OC giao AM = {U} 

Xét tứ giác OUMT có ^OUM = ^UMT = ^MTO = 900

=> tứ giác OUMT là hcn => ^UOT = 900 

Vì CD là tiếp tuyến (O) với M là tiếp điểm => ^OMD = 900 

Mặt khác : BD = DM ( tc tiếp tuyến cắt nhau ) 

CM = AC ( tc tiếp tuyến cắt nhau ) 

Xét tam giác COD vuông tại O, đường cao OM 

Ta có : \(OM^2=CM.MD\)hay \(OM^2=AC.BD\)=> R^2 = AC.BD 

c, Gọi I là trung điểm CD 

O là trung điểm AB 

khi đó OI là đường trung bình hình thang BDAC 

=> OI // AC mà AC vuông AB ( tc tiếp tuyến ) => OI vuông AB 

Xét tam giác COD vuông tại O, I là trung điểm => OI = IC = ID = R 

Vậy AB là tiếp tuyến đường tròn (I;CD/2) 

NV
10 tháng 4 2022

Gọi I là tâm đường tròn nội tiếp EOF, C và D lần lượt là tiếp điểm của (I) với OE và OF

Tứ giác ICOD là hình chữ nhật (có 3 góc vuông)

Mà \(IC=ID=r\Rightarrow ICOD\) là hình vuông

\(S_{IEF}+S_{IEO}+S_{IFO}=\dfrac{1}{2}\left(IG.EF+IC.EO+ID.FO\right)\)

\(=\dfrac{1}{2}r\left(EF+EO+FO\right)\) (do \(IG=IC=ID=r\))

\(=S_{OEF}=\dfrac{1}{2}OM.EF=\dfrac{1}{2}R.EF\)

\(\Rightarrow\dfrac{r}{R}=\dfrac{EF}{EF+OE+OF}>\dfrac{EF}{EF+EF+EF}=\dfrac{1}{3}\)

(do tam giác OEF vuông nên \(OE< EF;OF< EF\))

NV
10 tháng 4 2022

undefined

30 tháng 4 2017

Cho đường tròn (O), đường kính AB. Trên tiếp tuyến của (O) tại A lấy điểm M (M khác A). Từ M kẻ cát tuyến MCD (C nằm ở giữa M và D; tia MC nằm giữa MA và MO) và tiếp tuyến thứ hai MI (I là tiếp điểm) với đường tròn (O). Đường thẳng BC và BD cắt đường thẳng OM lần lượt tại E và F. Chứng minh:

  O là trung điểm của EF

a: OH*OA=OB^2=R^2

b: ΔOCD cân tại O

mà OM là trung tuyến

nên OM vuông góc với CD

Xét tứ giác OMBA có

góc OMA=góc OBA=90 độ

nên OMBA là tứ giác nội tiếp

c: Xét ΔOHE vuông tại H và ΔOMA vuông tại M có

góc MOA chung

Do đó: ΔOHE đồng dạng với ΔOMA

=>OH/OM=OE/OA

=>OM*OE=OH*OA=R^2=OC^2=OD^2

=>ΔODE vuông tại D

=>DE là tiếp tuyến của (O)