Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 700 góc nào bạn ?
b, Vì AB là tiếp tuyến (O) => ^ABO = 900
AO giao BC = K
AB = AC ; OB = OC = R
Vậy OA là đường trung trực đoạn BC
Xét tam giác ABO vuông tại B, đường cao BK
Áp dụng định lí Pytago tam giác ABO vuông tại B
\(AB=\sqrt{AO^2-BO^2}=\sqrt{16-4}=2\sqrt{3}\)cm
Áp dụng hệ thức : \(BK.AO=BO.AB\Rightarrow BK=\frac{BO.AB}{AO}=\frac{4\sqrt{3}}{4}=\sqrt{3}\)cm
Vì AO là đường trung trực => \(BC=2KB=2\sqrt{3}\)cm
Chu vi tam giác ABC là :
\(P_{ABC}=AB+AC+BC=2AB+BC=4\sqrt{3}+2\sqrt{3}=6\sqrt{3}\)cm
Mình nói sơ qua nhá:
a) Ta có ΔABO là Δ vuông tại B
Ta tính được AB=8 nhờ vào định lí Py-ta-go
b) Do I là trung điểm của CD nên OI⊥CD, lại suy ra được OI⊥IA
Nên I sẽ chuyển động trên đường tròn đường kính OA (cố định) khi C thay đổi trên đường tròn
c) Chứng minh cho ΔABD∼ΔACB
Suy ra được AC.AD=AB2 không đổi
tk nha bạn
thank you bạn
(^_^)
a) vì \(AC\)VÀ \(CM\)LÀ 2 TIẾP TUYẾN CẮT NHAU TẠI \(C\)CỦA ĐƯỜNG TRÒN \(\left(O\right)\)NÊN TA CÓ
- \(CO\)LÀ TIA PHÂN GIÁC \(\widehat{ACM}\) ( TÍCH CHẤT
- \(OC\)LÀ TIA PHÂN GIÁC \(\widehat{AOM}\) 2 TIẾP TUYẾN
- \(AC=CM\) CẮT NHAU )
\(\Rightarrow\widehat{AOC}=\widehat{MOC}\)
C/M TƯƠNG TỰ TA CÓ \(\widehat{MOD}=\widehat{BOD}\)
+ TA CÓ: \(\widehat{AOC}+\widehat{MOC}+\widehat{MOD}+\widehat{BOD}=180^0\)
\(\Leftrightarrow2\widehat{COM}+2\widehat{MOD}=180^0\)
\(\Leftrightarrow2.\left(\widehat{COM}+\widehat{MOD}\right)=180^0\)
\(\Leftrightarrow\widehat{COM}+\widehat{MOD}=90^0\)
HAY \(\widehat{COD}=90^0\)
VẬY \(\widehat{COD}=90^0\)
B) XÉT \(\Delta AOM\)CÓ : \(AO=OM\)( BÁN KÍNH ĐƯỜNG TRÒN TÂM O )
\(\Rightarrow\Delta AOM\)LÀ \(\Delta\)CÂN TẠI O
MÀ \(\widehat{AOI}=\widehat{MOI}\)( TÍNH CHẤT 2 TIẾP TUYẾN CẮT NHAU )
\(\Rightarrow OI\)LÀ TIA PHÂN GIÁC ĐỒNG THỜI LÀ ĐƯỜNG CAO TRONG \(\Delta\) CÂN \(AOM\)
\(\Rightarrow OI\perp AM\)TẠI \(I\)
\(\Rightarrow\widehat{MIO}=90^0\)
C/M TƯƠNG TỰ TA CÓ: \(MK\perp OK\)
\(\Rightarrow\widehat{OKM}=90^0\)
THEO CÂU A) TA CÓ: \(\widehat{COD}=90^0\)
XÉT TỨ GIÁC \(OIMK\) CÓ 3 GÓC VUÔNG \(\Rightarrow\)TỨ GIÁC \(OIMK\)LÀ HÌNH CHỮ NHẬT
VẬY T/G \(OIMK\)LÀ HCN
C) TA CÓ: \(AC=CM\)( TÍNH CHẤT 2 TIẾP TUYẾN ....)
TƯƠNG TỰ \(MD=BD\)
KHI ĐÓ: \(AC.BD\)
\(=CM.MD\)
+ \(OM\perp CM\)( \(CM\)LÀ TIẾP TUYẾN TẠI M )
ÁP DỤNG HỆ THỨC GIỮA CẠNH VÀ ĐƯỜNG CAO VÀO \(\Delta COD\)VUÔGN TẠI \(O\), ĐƯỜNG CAO \(OM\)TA CÓ
\(CM.MD=MO^2\)
\(\Rightarrow CM.MD=R^2\) ( VÌ \(MO\)LÀ BÁN KÍNH)
HAY \(AC.BD=R^2\) MÀ \(R\)KHÔNG ĐỔI
\(\Rightarrow AC.BD\)KO ĐỔI KHI \(C\)DI CHUYỂN TRÊN \(Ax\)
D) VẼ \(I\)LÀ TRUNG ĐIỂM CỦA \(CD\), NỐI \(O\)VỚI \(I\)
\(AC\perp AB\) ( AC LÀ TIẾP TUYẾN TẠI A )
\(BD\perp AB\)( BD LÀ TIẾP TUYẾN TẠI B)
\(\Rightarrow AC\)SONG SONG \(BD\)( CÙNG VUÔNG GOC VỚI AB )
\(\Rightarrow\)T/G \(ACDB\)LÀ HÌNH THANG
XÉT HÌNH THANG \(ACDB\)
CÓ \(CI=DI\)
\(AO=OB\)
\(\Rightarrow OI\)SONG SONG \(AC\)
MÀ \(AC\perp AB\)
\(\Rightarrow OI\perp AB\) ( 1 )
+ \(MC=MD=\frac{1}{2}CD\)
XÉT \(\Delta\)VUÔNG \(COD\)CÓ \(OI\)LÀ ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN \(CD\)
VÀ \(OI=\frac{1}{2}CD\)
\(\Rightarrow OM=MC=MD\)
\(\Rightarrow M\)CÁCH ĐỀU 3 ĐIỂM \(O,C,D\)
\(\Rightarrow M\in\left(I;\frac{CD}{2}\right)\) ( 2 )
TỪ ( 1 ) VÀ ( 2 ) TA CÓ: \(AB\)LÀ TIẾP TUYẾN CỦA ĐƯỜNG TRÒN ĐƯỜNG KÍNH CD
a) ABCD là hình thang vuông ( AD//BC)
Mà OM//AD //BC và O là trung điểm AB
theo định lí về đường TB hình thang => M là trung điểm của DC => MD =MC
b) theo a => OM là đường TB của ABCD => OM = (AD+BC)/2 hay AD+BC = 2 OM = 2R = không đổi
c) M là trung điểm CD => (M;CD/2) là đường tròn đường kính CD
C thuộc (M) mà BC _|_ CD tại C => BC là tiếp tuyến của (M)
D thuộc (M) mà AD_|_ CD tại D => AD là tiếp tuyến của (M)
d) do AD+BC =2R
=> S ( ABCD) lớn nhát khi CD lớn nhát => CD =AB = 2R
khi đó M là điểm chính giữa cung AB