Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Bạn C/m Tam Giác HOF- Tam giác KOA đồng dạng
=>OH/OK=OF/OA
=>OK.OF= OH.OA=OB^2=OD^2
=>OK/OD=OD/OF
=> Tam giác ODK và Tam giác OFD đồng dạng
=>Tam giác ODF vuông tại D
=>FD la tiếp tuyến của (O) (đpcm)
d. EI=BI=IA (IE la trung tuyến của tam giác vuông ABE)
=>góc IEB=góc IBE; Cmtt ta có góc FDE = góc FED
mà (góc IBE+ góc FDE)= 90 nên (góc IEB+góc FED)=90
=> F,E,I thẳng hàng
Ta có BINF là hình bình hành nên FN=BI=IA => IANF la hbh
=> AN=IF=IE+EF=IB+DF=FN+DF=DN (đpcm)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>\(BC=\sqrt{AB^2-AC^2}=R\sqrt{3}\)
b: Ta có: ΔOAC cân tại O
mà OD là đường cao
nên OD là tia phân giác của góc COA
Xét ΔOCD và ΔOAD có
OC=OA
\(\widehat{COD}=\widehat{AOD}\)
OD chung
Do đó: ΔOCD=ΔOAD
Suy ra: \(\widehat{OCD}=\widehat{OAD}=90^0\)
hay AD là tiếp tuyến của (O)
a: Xét (O) có
CM,CA là các tiếp tuyến
nen CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC vuông góc với MA tại trung điểm của MA
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD vuông góc với MB tại trung điểm của MB
Từ (1)và (2) suy ra góc COD=1/2*180=90 độ
=>O nằm trên đường tròn đường kính DC
b: Xét tứ giác MIOK có
góc MIO=góc IOK=góc MKO=90 độ
nên MIOK là hình chữ nhật
=>MO=IK
c: Xét hình thang ABDC có
O,O' lần lượt là trung điểm của AB,CD
nên OO' là đường trung bình
=>OO' vuông góc với AB
=>AB là tiếp tuyến của (O')
1) Xét (O):
MA là tiếp tuyến (\(d_1\) là tiếp tuyến; \(M,A\in d_1\)).
\(\Rightarrow MA\perp AB.\Rightarrow\widehat{MAB}=90^o.\)
hay \(\widehat{MAI}=90^o.\)
Xét tứ giác AMEI:
\(\widehat{MAI}+\widehat{MEI}=90^o+90^o=180^o.\)
Mà 2 góc này ở vị trí đối nhau.
\(\Rightarrow\) Tứ giác AMEI nội tiếp đường tròn.
2) Ta có:
I là trung điểm của OA (gt).
\(\Rightarrow IA=\dfrac{1}{2}OA=\dfrac{1}{2}R.\)
Mà \(R=\dfrac{1}{2}AB\left(AB=2R\right).\)
\(\Rightarrow IA=\dfrac{1}{2}.\dfrac{1}{2}AB=\dfrac{1}{4}AB.\)
Mà \(IB=AB-\dfrac{1}{4}AB=\dfrac{3}{4}AB.\)
\(\Rightarrow IB=3IA.\)
Xét (O):
\(\widehat{EBN}=\dfrac{1}{2}sđ\stackrel\frown{EB}\) (Góc tạo bởi tiếp tuyến và dây).
\(\widehat{EAB}=\dfrac{1}{2}sđ\stackrel\frown{EB}\) (Góc nội tiếp).
\(\Rightarrow\widehat{EBN}=\widehat{EAB}.\)
hay \(\widehat{EBN}=\widehat{EAI}.\)
Ta có: \(EI\perp EN\left(gt\right).\Rightarrow\widehat{IEN}=90^o.\)
\(\Rightarrow\widehat{IEB}+\widehat{BEN}=90^o.\) (1)
Xét (O):
AB là đường kính (gt).
\(E\in\left(O\right)\left(gt\right).\)
\(\Rightarrow\widehat{AEB}=90^o\) (Góc nội tiếp chắn nửa đường tròn).
\(\Rightarrow\widehat{AEI}+\widehat{IEB}=90^o.\) (2)
Tứ (1) và (2) \(\Rightarrow\widehat{AEI}=\widehat{BEN}.\)
Xét \(\Delta AEI\) và \(\Delta BEN:\)
\(\widehat{AEI}=\widehat{BEN}\left(cmt\right).\)
\(\widehat{EAI}=\widehat{EBN}\left(cmt\right).\)
\(\Rightarrow\Delta AEI\sim\Delta BEN\left(g-g\right).\)
\(\Rightarrow\dfrac{EI}{EN}=\dfrac{AI}{BN}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow EI.BN=AI.EN.\\ \Rightarrow3EI.BN=3AI.EN.\\ \Rightarrow3EI.BN=IB.EN.\)