Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có AD // OM // BC ; OA = OB
=> OM là đường trung bình của hình thang ABCD => M là trung điểm CD => MC = MD
2. Vì OM là đường trung bình của hình thang ABCD nên : \(OM=\frac{AD+BC}{2}\Rightarrow AD+BC=2OM\)không đổi.
3. Dễ thấy M là tâm của đường tròn đường kính CD vì MC = MD
Lại có AD vuông góc với MD => đpcm
4. Ta có : \(S_{ABCD}=\frac{1}{2}.\left(AD+BC\right).CD=OM.CD\)
Vì OM không đổi nên S.ABCD lớn nhất <=> CD lớn nhất <=> CD = AB
Vậy max (S.ABCD) = OM . AB = R.(2R) = 2R2 với R = AB/2
a) Xét (O) có
\(\widehat{CDA}\) là góc nội tiếp chắn \(\stackrel\frown{CA}\)
\(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{CA}\)
Do đó: \(\widehat{CDA}=\widehat{ABC}\)(Hệ quả góc nội tiếp)
hay \(\widehat{MDA}=\widehat{MBC}\)
Xét ΔMAD và ΔMCB có
\(\widehat{MDA}=\widehat{MBC}\)(cmt)
\(\widehat{AMD}\) chung
Do đó: ΔMAD\(\sim\)ΔMCB(g-g)
Suy ra: \(\dfrac{MA}{MC}=\dfrac{MD}{MB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(MA\cdot MB=MC\cdot MD\)(đpcm)
bn tựu vẽ hk nha
a, dễ cm tứ giác ABCD là hình thang
ta có AD//MO//CB(cùng vuông góc vs DC)
A0=B0
từ đây suy ra DM=MC
B, TỪ M KẺ MH VUÔNG GÓC VS AB
TA CÓ GÓC DAM=GÓC AMO( do AD//MO) (1)
LẠI CÓ GÓC AMO=GÓC MAO( do MO=AO) (2)
TỪ (1)(2) SUY RA GÓC DAM=GÓC MAO
LẠI CÓ GÓC D=GÓC MHA=90
SUY RA TAM GIAC DMA=TAM GIAC HMA
SUY RA AD=AH
tự BC=HB
TỪ ĐÂY SUY RA AD+CB=AH+BH=AB KO ĐỔI
C, TA CÓ MH=DM=MC(CMT)
LẠI CÓ MHVUOONG GÓC VS AB
SUY RA DƯỜNG TRÒN CD TX VS AB
D, TRONG HT VUÔNG ABCD CÓ DC<=AB
SUY RA SABCD=\(\frac{\left(AD+CB\right).DC}{2}=\frac{AB.CD}{2}< =\frac{AB^2}{2}\)
DẤU = XẢY RA KHI M NẰM CHÍNH GIỬA CUNG AB
a) ABCD là hình thang vuông ( AD//BC)
Mà OM//AD //BC và O là trung điểm AB
theo định lí về đường TB hình thang => M là trung điểm của DC => MD =MC
b) theo a => OM là đường TB của ABCD => OM = (AD+BC)/2 hay AD+BC = 2 OM = 2R = không đổi
c) M là trung điểm CD => (M;CD/2) là đường tròn đường kính CD
C thuộc (M) mà BC _|_ CD tại C => BC là tiếp tuyến của (M)
D thuộc (M) mà AD_|_ CD tại D => AD là tiếp tuyến của (M)
d) do AD+BC =2R
=> S ( ABCD) lớn nhát khi CD lớn nhát => CD =AB = 2R
khi đó M là điểm chính giữa cung AB
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
AC.BD=\(\frac{AB^2}{4}\)<=> 4AC.BD=AB^2
<=>4AC.BD=4R^2
<=> AC.BD=R^2<=>AC.BD=AO^2 (1)
<=>áp dụng tính chất 2 tiếp tuyến cắt nhau ta có AC =CM ;BD=MD ; thế vào (1) TA đc CM.MD=AO^2
Tiếp theo ta chứng minh tam giác COD vg bằng cách dựa vào tính chất 2 tiếp tuyến cắt nhau góc MDO=MBO; MCO=MAO Mà góc MAO +ABO =90 (do tam giac AMB vuông nội tiếp chắn nửa đg tròn cóa ab là đg kính.
KHI ĐÃ CHỨNG MINH ĐƯỢC TAM GIÁC COD mà có Mo là đg cao áp dụng hệ thức lượng ta có MO ^2=CM.MDHAY AO^2=CM.MD (ĐPCM)
a: Xét hình thang ADCB có
O là trung điểm của AB
OM//AD//CB
Do đó: M là trung điểm của CD
hay MD=MC