K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

N=\(\sqrt{3+2\sqrt{2}}\)+\(\sqrt{6-4\sqrt{2}}\)

=\(\sqrt{1+2\sqrt{2}+2}\)+\(\sqrt{4-2.2\sqrt{2}+2}\)

=\(\sqrt{\left(1+\sqrt{2}\right)^2}\)+\(\sqrt{\left(2-\sqrt{2}\right)^2}\)

=1+\(\sqrt{2}\)+2-\(\sqrt{2}\)=3

26 tháng 5 2017

Áp dụng bất đẳng thức Bunyakovsky

\(\Rightarrow\sqrt{\left(\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}\right)\left[\left(\sqrt{2}\right)^2+\left(3\sqrt{2}\right)^2+2^2\right]}\ge\left(\sqrt{\dfrac{4}{a}+9b+ca}\right)^2\)

\(\Leftrightarrow2\sqrt{6}\sqrt{\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}}\ge\dfrac{4}{a}+9b+ac\)

Tương tự ta có \(\left\{{}\begin{matrix}2\sqrt{6}\sqrt{\left(\dfrac{8}{b^2}+\dfrac{9c^2}{2}+\dfrac{a^2b^2}{4}\right)}\ge\dfrac{4}{b}+9c+ab\\2\sqrt{6}\sqrt{\left(\dfrac{8}{c^2}+\dfrac{9a^2}{2}+\dfrac{b^2c^2}{4}\right)}\ge\dfrac{4}{c}+9a+bc\end{matrix}\right.\)

\(\Rightarrow2\sqrt{6}S\ge\dfrac{4}{a}+9a+\dfrac{4}{b}+9b+\dfrac{4}{c}+9c+ab+bc+ac\)

\(\Leftrightarrow2\sqrt{6}S\ge\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+a\ge2\sqrt{4}=4\\\dfrac{4}{b}+b\ge2\sqrt{4}=4\\\dfrac{4}{c}+c\ge2\sqrt{4}=4\end{matrix}\right.\)

\(\Rightarrow\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\ge12+8a+8b+8c+ab+bc+ac\)

\(\Rightarrow2\sqrt{6}S\ge12+8a+8b+8c+ab+bc+ac\)

\(\Leftrightarrow2\sqrt{6}S\ge12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow2a+bc\ge2\sqrt{2abc}\)

Tượng tự ta có \(2b+ac\ge2\sqrt{2abc}\) ; \(2c+ab\ge2\sqrt{2abc}\)

\(\Rightarrow12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)

\(\Rightarrow2\sqrt{6}S\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)

Theo đề bài ta có \(a+b+c+\sqrt{2abc}\ge10\)

\(\Rightarrow6\left(a+b+c+\sqrt{2abc}\right)+12\ge72\)

\(\Rightarrow S\ge\dfrac{72}{2\sqrt{6}}=6\sqrt{6}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=2\)

6 tháng 4 2021

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(x\cdot1+y\cdot1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\Rightarrow x+y\le\sqrt{2}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(x\sqrt{1+y}+y\sqrt{1+x}\right)^2\le\left(x^2+y^2\right)\left(1+y+1+x\right)=x+y+2=2+\sqrt{2}\)

\(\Rightarrow x\sqrt{y+1}+y\sqrt{x+1}\ge\sqrt{2+\sqrt{2}}\)

Dấu = xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)

pro ghê ta yeu

1 tháng 12 2019

bạn viết sai đề rồi nhé đề đúng là căn(b^2+1/c^2) và căn (c^2 + 1/a^2) ở vế trái chứ ?

Áp dụng BĐT Cô - si, ta có :

\(\left(1.a+\frac{9}{4}.\frac{1}{b}\right)^2\le\left(1^2+\frac{81}{16}\right)\left(a^2+\frac{1}{b^2}\right)\)

\(\Rightarrow\sqrt{a^2+\frac{1}{b^2}}\ge\frac{4}{\sqrt{97}}\left(a+\frac{9}{4b}\right)\).Chứng minh tương tự, ta có:

\(\sqrt{b^2+\frac{1}{c^2}}\ge\frac{4}{\sqrt{97}}\left(b+\frac{9}{4c}\right)\)

\(\sqrt{c^2+\frac{1}{a^2}}\ge\frac{4}{\sqrt{97}}\left(c+\frac{4}{9a}\right)\)

Cộng 3 vế BĐT => đpcm

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Lời giải:

Do $a+b+c=1$ nên:

\(\text{VT}=\sqrt{\frac{ab}{c(a+b+c)+ab}}+\sqrt{\frac{bc}{a(a+b+c)+bc}}+\sqrt{\frac{ca}{b(a+b+c)+ac}}\)

\(=\sqrt{\frac{ab}{(c+a)(c+b)}}+\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ca}{(b+c)(b+a)}}\)

Áp dụng BĐT AM-GM:

\(\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{c+a}\right)\)

\(\sqrt{\frac{ca}{(b+c)(b+a)}}\leq \frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)

Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$