Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^3 + 20n = n^3 - 4n + 24n
n^3 + 20n = n.(n² - 4) + 24n
n^3 + 20n = n.(n - 2).(n+2) + 24n
n = 2k
=> n^3 + 20n = 8k.(k - 1).(k+1) + 48k
ta có: k.(k-1).(k+1) là tích 3 stn liên tiếp => chia hết cho 2.3 = 6
=> 8k.(k - 1).(k+1) chia hết 8.6 = 48 => n^3 +20n chia hết cho 48.
cho tam giác abc vuông tại a có ab=9cm , ac=12cm.gọi M, N lần lượt là trung điểm của ab,ac
a) tính độ dài mn
b)hỏi tứ giác BMNC là hình j ?vì sao?
Ta có: \(n^n-1=n^n-n^{n-1}+n^{n-1}-n^{n-2}+n^{n-2}-...-n+n-1\)
\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n+1\right)\)
\(\Rightarrow n^n-n^2+n-1=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n+1\right)+\left(n-1\right).\left(-n\right)\)
\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n+1-n\right)\)
\(=\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)+\left(1-1\right)\right]\)
\(=\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)\right]\) (1)
Vì \(n^{n-1};n^{n-2};...;n\) và 1 đồng dư khi chia cho n-1 (dư 1)
\(\Rightarrow n^{n-1}-1⋮n-1;n^{n-2}-1⋮n-1;...;n-1⋮n-1\)
\(\Rightarrow\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)⋮n-1\) (2)
Từ (1) và (2)
\(\Rightarrow\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)\right]⋮\left(n-1\right).\left(n-1\right)=\left(n-1\right)^2\)
hay \(n^n-n^2+n-1⋮\left(n-1\right)^2\) (do là số nguyên và n>1)
Vậy với số nguyên n>1 thì \(n^n-n^2+n-1⋮\left(n-1\right)^2\)
\(323=17.19\)
+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)
\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮19\)
+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(20^n-3^n⋮\left(20-3\right)=17\)
\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮17\)
Mà \(\left(17,19\right)=1\)
\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
\(a^3+6a^2+8=a\left(a^2+6a+9-1\right)=\)
\(=a\left[\left(a+3\right)^2-1\right]=a\left(a+3-1\right)\left(a+3+1\right)=\)
\(=a\left(a+2\right)\left(a+4\right)\)
Đây là tích của 3 số chẵn liên tiếp đặt \(a=2k\)
\(\Rightarrow a\left(a+2\right)\left(a+4\right)=2k\left(2k+2\right)\left(2k+4\right)=\)
\(=8k\left(k+1\right)\left(k+2\right)=A\)
Ta thấy
\(k\left(k+1\right)\) chẵn đặt \(k\left(k+1\right)=2p\)
\(\Rightarrow A=16p\left(k+2\right)⋮16\) (1)
Ta thấy \(k\left(k+1\right)\left(k+2\right)⋮3\) (2) (Tích của 3 số TN liên tiếp)
Từ (1) và (2)
\(\Rightarrow A⋮16x3\Rightarrow A⋮48\) vì \(\left(16,3\right)=1\)