Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,x+y+z=0=>x=-\left(y+z\right)\)
\(=>x^2=\left(y+z\right)^2=y^2+2yz+z^2\)
\(=>x^2-y^2-z^2=2yz\)
\(=>\left(x^2-y^2-z^2\right)^2=\left(2yz\right)^2=4y^2z^2\)
\(=>x^4+y^4+z^4-2x^2y^2-2x^2z^2+2y^2z^2=4y^2z^2\)
\(=>x^4+y^4+z^4=4y^2z^2-2y^2z^2+2x^2z^2+2x^2y^2=2x^2y^2+2y^2z^2+2x^2z^2\)
\(=>2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\left(đpcm\right)\)
\(2,A=2\left(x^6-y^6\right)-3\left(x^4+y^4\right)\)
\(=2\left[\left(x^2\right)^3-\left(y^2\right)^3\right]-3\left(x^4+y^4\right)\)
\(=2\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)
\(=2\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)
\(=2x^4+2x^2y^2+2y^4-3x^4-3y^4=-x^4+2x^2y^2-y^4\)
\(=-\left(x^4-2x^2y^2+z^4\right)=-\left[\left(x^2-y^2\right)^2\right]=-1\) (do x2-y2=1)
\(3,\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)
\(=\left(x-3\right)\left(x+3\right)\left(x-1\right)\left(x+1\right)+15=\left(x^2-9\right)\left(x^2-1\right)+15\left(1\right)\)
Đặt \(x^2-5=t\),khi đó (1) trở thành :
\(\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(=\left(x^2-6\right)\left(x^2-4\right)=\left(x^2-6\right)\left(x-2\right)\left(x+2\right)\)
\(4,a,20^n-1=20^n-1^n=\left(20-1\right)\left(20^{n-1}+20^{n-1}+...+1^{n-1}\right)\)
chia hết cho (20-1)=19
=>20n-1 là hợp số vì có nhiều hơn 2 ước
b) đang kẹt,vấn đề nằm ở đề
20n+16n-3n-1 \(⋮\)321
vì 323=17.19
Ta thấy : 20n+16n-3n-1
=(20n-1) + (16n-3n)
20n-1\(⋮\)19 với n chẵn
\(\Rightarrow\)(20n-1) + ( 16n -3n)\(⋮\)19 (1)
Mặt khác : 20n+16n-3n-1
=( 20n-3n) + ( 16n-1)
20n-3n\(⋮\)17 với n chẵn
16n-1 \(⋮\)17 với n chẵn
\(\Rightarrow\)(20n-3n) + ( 16n-1) \(⋮\)17 (2)
Từ (1) và (2) \(\Rightarrow\)20n+16n-3n-1 \(⋮\)17\(\times\)19
\(\Rightarrow\)20n+16n-3n-1 \(⋮\)323 ( đpcm)
b)
đặt A= 1+2^1+2^2+.....+2^(n-1) (1) (điều kiện: n là hợp số)
=>2A =2.[1+2^1+2^2+.....+2^(n-1)]
=>2A=2^1+2^2+.....+2^(n-1) +2^n (2)
lấy (2) - (1) vế theo vế ta có:
2A-A= 2^n -1
=> A= 2^n -1
=> 2^n -1 = 1+2^1+2^2+.....+2^(n-1)
vì n là hợp số =>n=a.b ( a,b thuộc N ; a >1; b>1)
=> 1+2^1+2^2+.....+2^(n-1) =1+2^1+2^2+.....+2^(a.b-1)
trong tổng 1+2^1+2^2+.....+2^(a.b-1) có (a.b-1-0) :1+1 =a.b số hạng
=> tổng 1+2^1+2^2+.....+2^(a.b-1) có thể chia thành b nhóm ; hoặc a nhóm
=>1+2^1+2^2+.....+2^(a.b-1) chia hết cho a và chia hết cho b mà a,b thuộc N ; a >1; b>1
=>1+2^1+2^2+.....+2^(a.b-1) là hợp số => 2^n - 1 cũng là hợp số