\(\in\)Z và n không chia hết cho 2 và 3 . CMR A=4n^2+3n+5 \(⋮\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

a)\(n^2+3n+5\)

\(=\left(11k+4\right)^2+3\left(11k+4\right)+5\)

\(=121k^2+88k+16+33k+12+5\)

\(=121k^2+121k+33⋮11\)\(\Rightarrow n^2+3n+5⋮11\)

b)Có: \(n^2+3n+5\)\(=121k^2+121k+33\)\(⋮̸\)\(121\)

\(\Rightarrow n^2+3n+5⋮̸\)\(121\)

17 tháng 9 2017

xét (2a+3b)(2b+3a)=\(4ab+6b^2+9ab+6a^2=6\left(a^2+b^2\right)+13ab\)

mặ khác ta có \(13ab⋮13\)\(a^2+b^2⋮13\left(gt\right)\Rightarrow6\left(a^2+b^2\right)⋮13\)\(\Rightarrow\left(2a+3b\right)\left(2b+3a\right)⋮13\)

\(\Rightarrow\)2a+3b hoặc 2b+3a chia hết cho 13

14 tháng 1 2016

+\(n=5k\)

\(P=4.5k^3+6.5k^2+3.5k-17\) không chia hết cho 5

+\(n=5k+1\)

\(P=4\left(5k+1\right)^3+6\left(5k+1\right)^2+3\left(5k+1\right)-17\)

\(=4\left(125k^3+75k^2+15k+1\right)+6\left(25k^2+10k+1\right)+15k+3-17\)

\(=4.125k^3+18.25k^2+135k-4\)không chia hết cho 5

+ tương tự ...........

Mình mới chỉ có thế thôi , chưa nghĩa ra cách khác ..

 

 

13 tháng 1 2016

bạn phân thành tick rồi chứng minh

24 tháng 12 2016

Đặt A=n^2+7n+22

Giả sử A=n^2+7n+22 chia hết cho 9 thì A cũng chia hết cho 3 

=> n^2+7n+22-3(3n+7)=n^2+7n+22-9n-21=n^2-2n+1=(n-1)^2 cũng chia hết cho 3 ,mà n E Z => n-1 cũng chia hết cho 3

Vì n-1 chia hết cho 3,đặt n-1=3k=>n=3k+1

Thay n=3k+1 vào A,ta có A=(3k+1)^2+7(3k+1)+22=9k^2+6k+1+21k+7+22=9k^2+27k+30 không chia hết cho 9,vậy điều giả sử là sai => đpcm