K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 1 2018

Lời giải:

Xét một thừa số tổng quát:

\(1-\frac{1}{1+2+...+n}=1-\frac{1}{\frac{n(n+1)}{2}}=1-\frac{2}{n(n+1)}\)

\(1-\frac{1}{1+2+...+n}=\frac{n^2+n-2}{n(n+1)}=\frac{(n-1)(n+2)}{n(n+1)}\)

Do đó:

\(P_n=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)....\left(1-\frac{1}{1+2+...+n}\right)\)

\(P_n=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{(n-1)(n+2)}{n(n+1)}\)

\(P_n=\frac{(1.2.3...(n-1))(4.5.6...(n+2))}{(2.3.4...n)(3.4.5..(n+1))}\)

\(P_n=\frac{1}{n}.\frac{n+2}{3}=\frac{n+2}{3n}\Rightarrow \frac{1}{P_n}=\frac{3n}{n+2}\)

Để \(\frac{1}{P_{n}}\in\mathbb{N}\Rightarrow \frac{3n}{n+2}\in\mathbb{N}\)

\(\Leftrightarrow 3n\vdots n+2\)

\(\Leftrightarrow 3(n+2)-6\vdots n+2\)

\(\Leftrightarrow 6\vdots n+2\)

\(\Rightarrow n+2=6\) do \(n+2>3\forall n>1\)

\(\Leftrightarrow n=4\)

Vậy \(n=4\)

12 tháng 6 2018

C=\(\dfrac{x-x^3}{x^2+1}\left(\dfrac{1}{1+2x+x^2}+\dfrac{1}{1-x^2}\right)+\dfrac{1}{1+x}\)

\(=\dfrac{x\left(1-x^2\right)}{x^2+1}\left(\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1-x\right)\left(1+x\right)}\right)+\dfrac{1}{1+x}\)

\(=\dfrac{x\left(1-x\right)\left(1+x\right)}{x^2+1}\left(\dfrac{1-x+1+x}{\left(1-x\right)\left(1+x\right)^2}\right)+\dfrac{1}{1+x}\)

\(=\dfrac{x\left(1-x\right)\left(1+x\right).2}{\left(x^2+1\right)\left(1-x\right)\left(1+x^2\right)}+\dfrac{1}{1+x}\)

\(=\dfrac{2x}{\left(x^2+1\right)\left(1+x\right)}+\dfrac{1}{1+x}\)

\(=\dfrac{2x+\left(x^2+1\right)}{\left(x^2+1\right)\left(1+x\right)}\)

\(=\dfrac{2x+x^2+1}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+2x+1}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x^2+1\right)\left(x +1\right)}\)

\(=\dfrac{x+1}{x^2+1}\)

5 tháng 12 2018

@Akai Haruma

22 tháng 1 2019

@Luân Đào

Rút gọn: \(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\) Giải:: ĐK: x khác +- 1...
Đọc tiếp

Rút gọn:

\(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)

Giải::

ĐK: x khác +- 1

\(M=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}\right]\cdot\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)

\(=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)}{\left(1-\sqrt{x}\right)}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)}{1-\sqrt{x}+x}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)

\(=1-\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)}{2}+\dfrac{-x\left(1-\sqrt{x}\right)^2}{2\left(1-\sqrt{x}+x\right)}\right]\)

rồi làm sao nữa ak?? Tớ có quy đồng lên, tính sơ sơ rồi nhưng thấy kq không gọn.

Câu b là : tìm các số nguyên x để M cũng là số nguyên . Nên tớ nghĩ kq sẽ gọn.

NHỜ MẤY CAO NHÂN RA TAY GIÚP VỚI NHAK ^^!

0