K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

Đáp án:

AD+BC

=ED-EA+EC-EB

=(ED+EC)-(EA+EB) (1)

Mà E là trung điểm của AB=> EA+EB=0

(1)=2EF (F là trung điểm DC)

ABDC là hình bình hành

=>\(\overrightarrow{AB}=\overrightarrow{CD};\overrightarrow{AC}=\overrightarrow{BD}\)

A: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\ne\overrightarrow{CB}\)

=>Loại

B: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}\)

\(=\overrightarrow{BA}+\overrightarrow{CB}+\overrightarrow{DC}\)

\(=\overrightarrow{CA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\)<>vecto BC

C: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{AD}\)

=>Loại

D: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{CA}\)

=>Loại

Do đó: Không có đáp án nào đúng

11 tháng 11 2018

1.Theo đl py-ta-go ,AB=8cm.Ta có|\(\overrightarrow{CA}-\overrightarrow{CB}\)| =|\(\overrightarrow{BA}\)|

=>|\(\overrightarrow{CA}-\overrightarrow{CB}\)|=8cm

3.\(\overrightarrow{IJ}\)=\(\overrightarrow{IA}+\overrightarrow{AD}+\overrightarrow{DJ}\)

\(\overrightarrow{IJ}=\overrightarrow{IB}+\overrightarrow{BC}+\overrightarrow{CJ}\) (vì \(\overrightarrow{IA}=\overrightarrow{IB}\);\(\overrightarrow{DJ}=\overrightarrow{CJ}\))

=>2\(\overrightarrow{IJ}=\overrightarrow{AD}+\overrightarrow{BC}\)

Tương tự =>đề bài

11 tháng 11 2018

Bài 1:

/CA-CB/=/BA/

sau đó bn dùng pitago là đc

Bài 2

a)MA-MB+MC=0

BA+MC=0

suy ra M là đỉnh còn lại của hình bình hành ABCM

b)xét vế trái ta có:

GA+2GB+3GC

=GB+2GC

=GA+AB+2GA+2AC

=3GA+AB+2AC

=AC

bài 3:

ta có: AD+BC=AB+BD+BA+AC=BD+AC

ta có: BD+AC=BA+AD+AD+DC=2IA+2AD+2DJ=2ID+2DJ=2IJ

bạn thêm ký hiệu vectơ vào hộ mình

\(\overrightarrow{AB}+\overrightarrow{DC}=2\cdot\overrightarrow{IN}+2\cdot\overrightarrow{MI}=2\cdot\overrightarrow{MN}\)

b: Sửa đề: \(\overrightarrow{AD}+\overrightarrow{BC}=2\cdot\overrightarrow{IJ}\)

Tham khảo:

undefined

 

 

Kẻ \(\overrightarrow{AH}=\overrightarrow{GC}\)

ΔABC đều có G là trọng tâm

nên G là tâm đường tròn nội tiếp ΔABC

=>AG,CG,BG lần lượt là phân giác của góc \(\widehat{BAC};\widehat{ACB};\widehat{ABC}\)

ΔABC đều

=>\(\widehat{BAC}=\widehat{ACB}=\widehat{ABC}=60^0\)

AG là phân giác của góc BAC

=>\(\widehat{BAG}=\widehat{CAG}=\dfrac{1}{2}\cdot\widehat{BAC}=\dfrac{1}{2}\cdot60^0=30^0\)

CG là phân giác của góc ACB

=>\(\widehat{ACG}=\widehat{BCG}=\dfrac{1}{2}\cdot\widehat{ACB}=30^0\)

Xét ΔGAC có \(\widehat{AGC}+\widehat{GAC}+\widehat{GCA}=180^0\)

=>\(\widehat{AGC}+30^0+30^0=180^0\)

=>\(\widehat{AGC}=120^0\)

\(\overrightarrow{AH}=\overrightarrow{GC}\)

=>AH//GC và AH=GC

Xét tứ giác AHCG có

AH//CG

AH=CG

Do đó: AHCG là hình bình hành

=>\(\widehat{GAH}+\widehat{AGC}=180^0\)

=>\(\widehat{GAH}=180^0-120^0=60^0\)

ΔABC đều có G là trọng tâm

nên \(AG=CG=BG=\dfrac{a\sqrt{3}}{3}=\dfrac{2\sqrt{3}\cdot\sqrt{3}}{3}=2\)

\(\overrightarrow{AB}-\overrightarrow{GC}=\overrightarrow{AB}-\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{HA}=\overrightarrow{HB}\)

\(\widehat{BAH}=\widehat{BAG}+\widehat{GAH}=30^0+60^0=90^0\)

=>ΔABH vuông tại A

AH=CG

mà 2

nên AH=2

ΔABH vuông tại A

=>\(BH^2=AB^2+AH^2\)

=>\(BH^2=\left(2\sqrt{3}\right)^2+2^2=16\)

=>BH=4

=>\(\left|\overrightarrow{AB}-\overrightarrow{GC}\right|=\left|\overrightarrow{HB}\right|=HB=4\)