\(\sqrt{N}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

a)\(pt\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\Rightarrow x=3\)  pt trong ngoặc vô nghiệm

b)\(pt\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\left(x^2-4\right)=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(\frac{1}{\sqrt{x^2-4}}-1\right)=0\)

\(\Rightarrow x=\pm2;\frac{1}{\sqrt{x^2-4}}-1=0\)

\(\Rightarrow x^2=5\Rightarrow x=\pm\sqrt{5}\)

Vậy no pt là x=±2;x=± căn 5

6 tháng 9 2016

a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)

Đặt \(x-3=t\) pt thành

\(\sqrt{t\left(t-6\right)}-t=0\)

\(\Leftrightarrow t^2-6t=t^2\)

\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)

 

6 tháng 9 2016

b)\(\sqrt{x^2-4}-x^2+4=0\)

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

Đặt \(\sqrt{x^2-4}=t\) pt thành

\(t=t^2\Rightarrow t\left(1-t\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).

Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\) 

Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)

 

 

 

 

 

1 tháng 1 2019

BĐT Cô-si đê ông

1 tháng 1 2019

\(2.\sqrt{a}+3.\sqrt[3]{b}+4.\sqrt[4]{c}\)

\(=\sqrt{a}+\sqrt{a}+\sqrt[3]{b}+\sqrt[3]{b}+\sqrt[3]{b}+\sqrt[4]{c}+\sqrt[4]{c}+\sqrt[4]{c}+\sqrt[4]{c}\)

Áp dụng BĐT AM-GM ta có:

\(2.\sqrt{a}+3.\sqrt[3]{b}+4.\sqrt[4]{c}\ge9\sqrt[9]{\sqrt{a}.\sqrt{a}.\sqrt[3]{b}.\sqrt[3]{b}.\sqrt[3]{b}.\sqrt[4]{c}.\sqrt[4]{c}.\sqrt[4]{c}.\sqrt[4]{c}}=9.\sqrt[9]{abc}\)

                                                                                                                                           đpcm    

3 tháng 7 2019

\(b,\sqrt{x^2-4}-x^2+4=0\Leftrightarrow\sqrt{x^2-4}-\left(x^2-4\right)=0\Leftrightarrow\sqrt{x^2-4}=x^2-4.Dat:x^2-4=a\Rightarrow\sqrt{a}=a\Leftrightarrow a-\sqrt{a}=0\Leftrightarrow\sqrt{a}\left(\sqrt{a}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=0\\\sqrt{a}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\) \(+,a=0\Rightarrow x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

\(+,a=1\Leftrightarrow x^2-4=1\Leftrightarrow x^2=5\Leftrightarrow x=\pm\sqrt{5}\)

\(c,\sqrt{2x-1}=x-3\Leftrightarrow2x-1=x^2-6x+9\Leftrightarrow x^2-8x+10=0\Leftrightarrow x^2-8x+16=6\Leftrightarrow\left(x-4\right)^2=6\Leftrightarrow x=\pm\sqrt{6}+4\)

b)\(\sqrt{x^2-4}-x^2+4\) =0

<=>\(\sqrt{x^2-4}\left(1-\sqrt{x^2-4}\right)\) =0

<=>\(\sqrt{x-2}.\sqrt{x+2}\left(1-\sqrt{x-2}.\sqrt{x+2}\right)=0\)

<=>\(\left\{{}\begin{matrix}\sqrt{x-2=0}\\\sqrt{x+2=0}\\1-\sqrt{x-2}.\sqrt{x+2}=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

c)\(\sqrt{2x-1}=x-3\)

<=>\(2x-1=\left(x-3\right)^2\)

<=>\(2x-1-x+6x-9=0\)

<=>7x=10

<=>x=\(\frac{10}{7}\)

9 tháng 10 2019

a.

\(DK:49-28x-4x^2\ge0\)

PT\(\Leftrightarrow\sqrt{49-28x-4x^2}=5\)

\(\Leftrightarrow49-28x-4x^2=25\)

\(\Leftrightarrow4x^2+28x-24=0\)

\(\Leftrightarrow x^2+7x-6=0\)

Ta co:

\(\Delta=7^2-4.1.\left(-6\right)=73>0\)

\(\Rightarrow\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\left(n\right)\\x_2=\frac{-7-\sqrt{73}}{2}\left(n\right)\end{cases}}\)

Vay nghiem cua PT la \(\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\\x_2=\frac{-7-\sqrt{73}}{2}\end{cases}}\)

21 tháng 11 2019

a, Ta có: \(\Delta'=1-m+3=4-m\)

Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow4-m>0\Leftrightarrow m< 4\)

b, ĐXXĐ: \(x\le\frac{9}{4}\)

\(pt\Leftrightarrow\sqrt{\left(9-4x\right)\left(x-3\right)^2}=\left|-2x+5\right|\sqrt{9-4x}\)

\(\Leftrightarrow\sqrt{9-4x}\left(\left|x-3\right|-\left|-2x+5\right|\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\\left|x-3\right|=\left|-2x+5\right|\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\x-3=-2x+5\\x-3=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{4}\\x=\frac{8}{3}\left(l\right)\\x=2\end{matrix}\right.\)

Vậy pt đã cho có 2 nghiệm \(x=2;x=\frac{9}{4}\)

2 tháng 7 2018

a/ \(\sqrt{x^2-6x+9}=\sqrt{6-2\sqrt{5}}\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(\Leftrightarrow|x-3|=\sqrt{5}-1\)

Làm nốt

b/ \(\sqrt{9x^2-6x+1}-3\sqrt{\frac{7-4\sqrt{3}}{9}}=0\)

\(\Leftrightarrow\sqrt{\left(3x-1\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(\Leftrightarrow|3x-1|=2-\sqrt{3}\)

Làm nốt

c/ \(\sqrt{2x^2-4x+2}-\sqrt{3-\sqrt{5}}=0\)

\(\Leftrightarrow\sqrt{4x^2-8x+4}-\sqrt{6-2\sqrt{5}}=0\)

\(\Leftrightarrow\sqrt{\left(2x-2\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)

\(\Leftrightarrow|2x-2|=\sqrt{5}-1\)

Làm nốt