Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với
b) Ta có: \(mn\left(m^2-n^2\right)=mn\left(m-n\right)\left(m+n\right)\)(*)
Xét tích (*), ta thấy khi m và n có cùng tinh chẵn lẻ thì m - n và m + n là số chẵn, từ đó (*)\(⋮2\)
Nếu chỉ có một trong hai số m và n là số chẵn, thì hiển nhiên (*) \(⋮2\)
Vậy (*) \(⋮2\)với mọi trường hợp m và n nguyên. (1)
Xét tiếp tích (*), ta thấy khi m và n có cùng số dư (là các cặp 0,0 ; 1,1 ; 2,2) khi chia cho 3 thì \(m-n⋮3\), từ đó (*) \(⋮3\)
Khi một trong hai số m và n chia hết cho 3 (là các cặp 0,1 ; 0,2) thì hiển nhiên (*) \(⋮3\)
Khi hai số m và n có tổng các số dư khi chia cho 3 là 3 (là cặp 1,2) thì \(m+n⋮3\), từ đó (*) \(⋮3\)
Vậy (*) \(⋮3\)với mọi trường hợp m và n nguyên. (2)
Mặt khác \(\left(2,3\right)=1\)(3)
Từ (1), (2) và (3) \(\Rightarrow\)(*) \(⋮2.3=6\)với mọi m và n nguyên \(\Rightarrow mn\left(m^2-n^2\right)⋮6\)với mọi m và n nguyên.
c) Đặt \(n\left(n+1\right)\left(2n+1\right)=k\left(k\inℤ\right)\)
Xét số k, ta thấy n và n + 1 không cùng tính chẵn lẻ nên trong hai số n và n + 1 luôn có một số là bội của 2
\(\Rightarrow k⋮2\)với mọi n nguyên (1)
Xét tiếp số k lần nữa, ta lại thấy khi n\(⋮3\)thì hiển nhiên \(k⋮3\)
Khi n chia 3 dư 2 thì \(n+1⋮3\),từ đó \(k⋮3\)
Khi n chia 3 dư 1 thì \(2n+1⋮3\), từ đó \(k⋮3\)
Vậy \(k⋮3\)với mọi n nguyên. (2)
Mà \(\left(2,3\right)=1\)(3)
Từ (1), (2) và (3) \(\Rightarrow k⋮2.3=6\)với mọi n nguyên \(\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮6\)với mọi n nguyên
\(n^6-n^4-n^2+1\\ =n^4\left(n^2-1\right)-\left(n^2-1\right)\\ =\left(n^4-1\right)\left(n-1\right)\left(n+1\right)\\ =\left(n^2-1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+1\right)\\ =\left(n-1\right)^2\left(n+1\right)^2\)
Ta có: A=n(n+1)(2n+1)
\(=n\left(n+1\right)\left(2n+2-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+n\left(n+1\right)\left(n-1\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3!\)
hay \(\left(n-1\right)n\left(n+1\right)⋮6\)
\(\Leftrightarrow A⋮6\)
* Chứng minh \(4^a+a+b\equiv0\left(mod2\right)\)
Ta có:
\(a+1+b+2007=a+b+2008\equiv a+b\equiv0\left(mod2\right)\)
\(\Rightarrow4^a+a+b\equiv0\left(mod2\right)\)
* Chứng minh \(4^a+a+b\equiv0\left(mod3\right)\)
Ta có:
\(a+1+b+2007=a+b+2008\equiv1+a+b\equiv0\left(mod3\right)\)
\(\Rightarrow a+b\equiv2\left(mod3\right)\)
\(\Rightarrow4^a+a+b\equiv1+a+b\equiv1+2\equiv0\left(mod3\right)\)
Vì 2, 3 nguyên tố cùng nhau nên \(4^a+a+b\equiv0\left(mod6\right)\)
\(N=1+6+6^2+..+6^{99}\)
\(N=\left(1+6\right)+6^2\left(1+6\right)+...+6^{98}\left(1+6\right)=7\left(1+6^2+6^4+..+6^{98}\right)\\ \)
\(N=7.\left[\left(1+6^2\right)+6^4\left(1+6^2\right)+6^{96}\left(1+6^2\right)\right]=7.37\left(1+6^4+...+6^{96}\right)\)
7.37=259=> dpcm