K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2015

a)-Xét n lẻ=>n+2015 chẵn=>n+2015 chia hết cho 2

=>(n+2014).(n+2015) chia hết cho 2

-Xét n chẵn=>n+2014 chẵn=>n+2014 chia hết cho 2

=>(n+2014).(n+2015) chia hết cho 2

Vậy (n+2014).(n+2015) chia hết cho 2

b)Ta thấy: 7 đồng dư với 1(mod 3)

=>7n đồng dư với 1n(mod 3)

=>7n đồng dư với 1(mod 3)

=>7n+2 đồng dư với 1+2(mod 3)

=>7n+2 đồng dư với 3(mod 3)

=>7n+2 đồng dư với 0(mod 3)

=>7n+2 chia hết cho 3

=>(7n+1).(7n+2) chia hết cho 3

Vậy (7n+1).(7n+2) chia hết cho 3

23 tháng 11 2021

\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)

23 tháng 11 2021

a,( 1;5 )

b, ( 1; 2; 4)

c (1;3 )

5 tháng 1 2016

dễ mà ko làm đc ngu

5 tháng 1 2016

ban noi de thi ban lam di

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 1:

$5a+8b\vdots 3$

$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$

$\Leftrightarrow 5a+8b-6b-6a\vdots 3$

$\Leftrightarrow 2b-a\vdots 3$

 Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.

Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$

Mặt khác:

Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$

Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$ 

$\Rightarrow A\vdots 3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$

$\Rightarrow A\vdots 3$

Tóm lại $A\vdots 3(2)$

Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$

a: 7n chia hết cho 3

mà 7 không chia hết cho 3

nên \(n⋮3\)

=>\(n=3k;k\in Z\)

b: \(-22⋮n\)

=>\(n\inƯ\left(-22\right)\)

=>\(n\in\left\{1;-1;2;-2;11;-11;22;-22\right\}\)

c: \(-16⋮n-1\)

=>\(n-1\inƯ\left(-16\right)\)

=>\(n-1\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

=>\(n\in\left\{2;0;3;-1;5;-3;9;-7;17;-15\right\}\)

d: \(n+19⋮18\)

=>\(n+1+18⋮18\)

=>\(n+1⋮18\)

=>\(n+1=18k\left(k\in Z\right)\)

=>\(n=18k-1\left(k\in Z\right)\)

7 tháng 12 2019

a/

+ Nếu n chẵn (n+10) chẵn => n+10 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

+ Nếu n lẻ thì (n+15) chẵn => n+15 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

b/ 

n(n+1)(2n+1) chi hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n(n+1)(2n+1) chia hết cho 2

+ Nếu n lẻ => n+1 chẵn => n+1 chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2

=> n(n+1)(2n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 => n+2 chia hết cho 3 => 2(n+2)=2n+4=2n+1+3 chia hết cho 3 mà 3 chia hết cho 3 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

=> n(n+1)(2n+1) chia hết cho 3 với mọi n

=> n(n+1)(2n+1) chia hết cho 6 vơi mọi n

c/

n(2n+1)(7n+1) chia hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

+ Nếu n lẻ => 7n lẻ => 7n+1 chẵn => 7n+1 chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

=> n(2n+1)(7n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => 10(n+1)=10n+10=(7n+1)+(3n+9)=(7n+1)+3(n+3) chia hết cho 3

Mà 3(n+3) chia hết cho 3 => 7n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 chứng minh tương tự câu (b) => 2n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

=> n(2n+1)(7n+1) chia hết cho 3 với mọi n

=> n(2n1)(7n+1) chia hết cho 6 với mọi n

6 tháng 1 2018

a. \(2n+7⋮n+1\)

Mà \(n+1⋮n+1\)

\(\Leftrightarrow\hept{\begin{cases}2n+7⋮n+1\\2n+2⋮n+1\end{cases}}\)

\(\Leftrightarrow5⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(5\right)\)

Suy ra :

+) n + 1 = 1 => n = 0

+) n + 1 = 5 => n = 4

Vậy ........