Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
a) Gọi \(d\)là ước chung của \(n+3;n+4\)
\(\Rightarrow n+3⋮d\)và \(n+4⋮d\)
\(\Rightarrow n+3-\left(n+4\right)⋮d\)
\(\Rightarrow n+3-n-4⋮d\)
\(\Rightarrow-1⋮d\Rightarrow d=-1;1\)
Tử và mẫu chỉ có ước chung là -1;1 nên phân số \(\frac{n+3}{n+4}\)là phân số tối giản (đpcm)
a) Có:n+3 chia hết n-2
Mà:n-2 chia hết n-2
Xét: (n+3)-(n-2) chia hết n-2
n+3-n+2 chia hết cho n-2
(n-n)+3-2 chia hết cho n-2
1 chia hết cho n-2
nên: n-2 E Ư(1)={1:-1}
Xét:
n-2=1 n-2=-1
n =1+2 n =-1+2
n =3 E Z(chọn) n =1 E Z(chọn)
Vậy:n={1;3}
a) Có:n+3 chia hết n-2
Mà:n-2 chia hết n-2
Xét: (n+3)-(n-2) chia hết n-2
n+3-n+2 chia hết cho n-2
(n-n)+3+2 chia hết cho n-2
5 chia hết cho n-2
nên: n-2 E Ư(5)={1:-1;5;-5}
Xét:
n-2=1 n-2=-1 n-2=5 n-2=-5
n =1+2 n =-1+2 n =5+2 n =-5+2
n =3 n =1 n =7 n=-3
Vậy:n={1;3;-3;7}
a: Gọi d=UCLN(2n+1;2n+3)
\(\Leftrightarrow2n+3-2n-1⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>(2n+1;2n+3)=1
b: Gọi a=UCLN(2n+7;n+3)
\(\Leftrightarrow2n+7-2n-6⋮a\)
=>a=1
=>UCLN(2n+7;n+3)=1
dài kinh,bài này chắc làm đến tối! bn ơi,bn cho từng câu một thôi!đau đầu lắm!
a)Gọi ƯCLN (\(n+3;2n+5\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+3\right)⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow\left(2n+6\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (\(n+3;2n+5\))=1
\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản(đpcm)
b)Gọi ƯCLN (\(2n+9;3n+14\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+9\right)⋮d\Rightarrow3\left(2n+9\right)⋮d\Rightarrow\left(6n+27\right)⋮d\\\left(3n+14\right)⋮d\Rightarrow2\left(3n+14\right)⋮d\Rightarrow\left(6n+28\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+28\right)-\left(6n+27\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (\(2n+9;3n+14\))=1
\(\Rightarrow\frac{2n+9}{3n+14}\) là phân số tối giản.(đpcm)
c)Gọi ƯCLN(\(6n+11;2n+5\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(6n+11\right)⋮d\\\left(2n+5\right)⋮d\Rightarrow3\left(2n+5\right)⋮d\Rightarrow\left(6n+15\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+15\right)-\left(6n+11\right)⋮d\)
\(\Rightarrow4⋮d\)
Mà \(\left(6n+15\right);\left(6n+11\right)⋮̸2\)
\(\Rightarrow d=1\)
⇒ƯCLN(\(6n+11;2n+5\))=1
\(\Rightarrow\frac{6n+11}{2n+5}\)là phân số tối giản (đpcm)
d)Gọi ƯCLN(\(12n+1;30n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(12n+1\right)⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow\left(60n+5\right)⋮d\\\left(30n+2\right)⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow\left(60n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(12n+1;30n+2\))=1
\(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)
e)Gọi ƯCLN(\(21n+4;14n+3\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(21n+4\right)⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow\left(42n+8\right)⋮d\\\left(14n+3\right)⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow\left(42n+9\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(21n+4;14n+3\))=1
\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản (đpcm)
f) Gọi ƯCLN(\(2n+3;n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(n+2\right)⋮d\Rightarrow2\left(n+2\right)⋮d\Rightarrow\left(2n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(2n+3;n+2\))=1
\(\Rightarrow\frac{2n+3}{n+2}\)là phân số tối giản (đpcm)
g) Gọi ƯCLN(\(n+1;3n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+1\right)⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow\left(3n+3\right)⋮d\\\left(3n+2\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(n+1;3n+2\))=1
\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản (đpcm)
mình đang gấp mình giải 1 phần phần kia tương tự nha dễ lắm
ta có 2n+3 \(⋮\)n-1
=> (2n-2)+5\(⋮\)n-1 ( vì 2n +3 =(2n-2)+5)
=> 2(n-1)+5\(⋮\)n-1
mà 2(n-1)\(⋮\)n-1
để (2n-2)+5 \(⋮\)n-1
thì 5 chia hết cho n-1
=> n-1 thuộc ước của 5 là 1;-1;5;-5
th1 n-1=1
n=1+1
n=2
....
vay ...