K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

Nếu n = 1 thì \(A=2^{2n+1}+3=2^{2.1+1}+3=2^3+3=11\) có là hợp số đâu.

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

AH
Akai Haruma
Giáo viên
6 tháng 2 2024

Lời giải:

Sửa lại đề: Với mọi $n\in\mathbb{N}^*$, vì khi $n=0$ thì biểu thức nhận giá trị =7 là số nguyên tố.
Ta thấy:

$2^{2n+1}=4^n.2\equiv 1^n.2\equiv 2\pmod 3$

$\Rightarrow 2^{2n+1}=3k+2$ với $k$ là số tự nhiên

$\Rightarrow 2^{2^{2n+1}}+3=2^{3k+2}+3$

$=8^k.4+3\equiv 1^k.4+3\equiv 7\equiv 0\pmod 7$

$\Rightarrow 2^{2^{2n+1}}+3\vdots 7$. Mà $2^{2^{2n+1}}+3>7$ với mọi $n\in\mathbb{N}^*$ nên $2^{2^{2n+1}}+3$ là hợp số.

8 tháng 5 2016

a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)

<=> 3(2n+5) chia hết cho (3n+1)

<=>(6n+15) chia hết cho (3n+1)

<=> (6n + 2 +13) chia hết cho (3n+1)

<=> 13 chia hết cho (3n+1)

=> (3n+1) thuộc Ư(13)

Vì n thuộc N

=> (3n+1) = 1,13

=> n = 0 hoặc 4

b)Trong phần này ta sẽ áp dung 1 tính chất sau:

a/b < (a+m)/(b+m)      với a<b

Ta thấy :

x/(x+y)  >  x/(x+y+z)

y/(y+z) > y/(x+y+z)

z/(z+x) > z/(x+y+z)

=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)

=> A>1

Ta thấy :

x/x+y < (x+z)/(x+y+z)

y/y+z < (y+x)/(x+y+z)

z/z+x < (z+y)/(x+y+z)

=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)

=>A< 2(x+y+z)/(x+y+z)

=> A<2

=>1<A<2

=> A ko phải là số nguyên(đpcm)

21 tháng 1 2016

Giúp mình với
(-3)2+33-(-3)0
Đáp số là 35
 

21 tháng 1 2016

Vì a và b đều có Ức chung là One

số các số hạng là:

(2n-1-1):2+1=n(số)

tổng A là:(2n-1+1)n:2=n.n=n2 là số chính phương

=>A là số chính phương

=>đpcm