Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(a^3+b^3+c^3-\left(a+b+c\right)=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right).\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\) (*)
mà \(a\left(a-1\right)\left(a+1\right)\) là tích 3 số liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> \(a\left(a-1\right)\left(a+1\right)⋮6\)
tương tự : \(b\left(b-1\right)\left(b+1\right)⋮6\)
\(c\left(c-1\right)\left(c+1\right)⋮6\)
=> (*) chia hếtcho 6
\(\Leftrightarrow a^3+b^3+c^3-\left(a+b+c\right)\) chia hết cho 6
mà theo bài ra ta có: \(a+b+c⋮6\)
nên \(a^3+b^3+c^3⋮6\) => đpcm
Đặt \(A = a_{1} + a_{2} + \dots + a_{n}; B = a_{1}^3 + a_{2}^3 + \dots + a_{n}^3 \)
Ta có \(a_n^3-a_n=a_n\left(a_n^2-1\right)=a_n\left(a_n-1\right)\left(a_n+1\right)⋮6\)(tích ba số nguyên liên tiếp sẽ có một số chia hết cho 2, một số chia hết cho 3)
Ta có \(B-A=a_1\left(a_1-1\right)\left(a_1+1\right)+a_2\left(a_2-1\right)\left(a_2+1\right)+...+a_n\left(a_n-1\right)\left(a_n+1\right)\)
Suy ra \(B-A⋮6\)
=> A,B cùng chia hết cho 6 hoặc cùng không chia hết cho 6
=> nếu \(A⋮6\)thì \(B⋮6\)
=>ĐPCM